Molecular mechanism of membrane association of Bruton's Tyrosine Kinase
布鲁顿酪氨酸激酶膜缔合的分子机制
基本信息
- 批准号:10604872
- 负责人:
- 金额:$ 4.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:Adaptive Immune SystemAgammaglobulinaemia tyrosine kinaseAntibodiesAntigensB cell differentiationB lymphocyte immortalizationB lymphoid malignancyB-Cell ActivationB-Cell Antigen ReceptorB-LymphocytesBindingBinding SitesBiochemicalBiological AssayCell LineCell ProliferationCell membraneChronic Lymphocytic LeukemiaComplementComplexConserved SequenceDNADataDetectionEnvironmentEventGenerationsGenetic TranscriptionGoalsImmunityIn VitroInformal Social ControlLearningLengthLipid BilayersLipid BindingLipidsMalignant NeoplasmsMass Spectrum AnalysisMeasuresMembraneMembrane ProteinsModelingMolecularMolecular ConformationMutationNF-kappa BNon-Hodgkin&aposs LymphomaPH DomainPathway interactionsPharmacologic SubstancePhosphatidylinositolsPhosphatidylserine SynthasePhosphatidylserinesPhosphotransferasesPredispositionProliferatingProtein Tyrosine KinaseProteinsRaji CellReceptor ActivationReceptor SignalingResearchResistanceSequence HomologySignal PathwaySignal TransductionSiteSpecificitySurfaceTrainingTyrosine Kinase InhibitorUnited States Food and Drug AdministrationVesicleWestern Blottingadaptive immune responseantigen bindingcancer cellcancer therapychemotherapyexperimental studyin vivoinhibitorleukemia/lymphomamutantnovelnuclear factors of activated T-cellsoverexpressionpathogenpharmacologicphosphoproteomicspreservationrecruitresistance mutationresponseside effectstoichiometrysuccesstripolyphosphate
项目摘要
PROJECT SUMMARY
The adaptive immune system is driven by the B Cell receptor (BCR) pathway, which triggers B cell
differentiation and proliferation in response to antigen binding. Activation of the BCR generates signaling
lipid phosphatidylinositol – 3,4,5 – triphosphate (PIP3) on the inner leaflet of the plasma membrane. The
pleckstrin homology (PH) domain of non-receptor tyrosine kinase Bruton's Tyrosine Kinase (Btk) binds to
this PIP3, triggering release of an auto-inhibited conformation and trans auto-phosphorylation. Auto-
phosphorylated Btk activates downstream pathways, leading to B cell activation and proliferation. Overactive
BCR signaling can lead to severe malignancies, such as chronic lymphatic leukemia and non-Hodgkin's
lymphoma. The first Btk inhibitor, ibrutinib, was approved in 2013 by the Food and Drug Administration as
an alternative to chemotherapy for the treatment of B cell malignancies. Successful Btk inhibition slows
cancer cell proliferation by reducing the activation and binding of transcription regulator NF-κB to DNA. The
most widely used Btk inhibitors are ibrutinib and second-generation derivatives, which irreversibly bind the
ATP-binding pocket of the kinase domain. This pocket is highly conserved among tyrosine kinases and
consequently, treatment leads to significant off-target side effects and resistance due to mutations in the
binding site. These factors necessitate alternative inhibitory sites within Btk for the advancement of B-cell
cancer treatment. The critical and initial step in Btk activation is its plasma membrane association through
the PH domain. The PH domain represents an attractive inhibitory target as there is low sequence homology
among the class. However, the lipid specificity, stoichiometry of PIP3 binding and how it regulates these
assemblies, functional oligomeric states of full-length Btk, the interfaces involved, are unknown. The goal
of my proposal is to determine the lipid specificity, stoichiometry, mechanism of membrane
recruitment, and the membrane-associated oligomeric states of Btk. Through a quantitative
understanding of these molecular events, I aim to understand how the function of Btk at the plasma
membrane is regulated. I will use a workflow developed by the Gupta lab to directly detect protein-protein
and protein-lipid interactions from a lipid bilayer using native mass spectrometry (nativeMS). This will allow
me to detect the lipids that interact with Btk in a bilayer mimicking the lipid composition of the plasma
membrane as well as the oligomeric states of membrane bound Btk. I have obtained preliminary nativeMS
and vesicle association data that shows in vitro binding to PS as well as the ability to associate with bilayers
in a PS-dependent manner. I will determine the functional consequences of this yet uncharacterized lipid
interaction using an immortalized B Cell line. By activating the BCR within the presence of a PS scavenger,
I can determine whether PS plays a role in the BCR pathway, making it a mechanism for inhibition of Btk.
项目摘要
适应性免疫系统由B细胞受体(BCR)途径驱动,其触发B细胞
分化和增殖。BCR的激活产生信号传导
脂磷脂酰肌醇-3,4,5-三磷酸(PIP 3)在质膜的内小叶上。的
非受体酪氨酸激酶布鲁顿酪氨酸激酶(Btk)的普列克底物蛋白同源(PH)结构域结合
这种PIP 3,触发了自抑制构象和反式自磷酸化的释放。自动-
磷酸化Btk激活下游途径,导致B细胞活化和增殖。过度活动
BCR信号可导致严重的恶性肿瘤,如慢性淋巴细胞白血病和非霍奇金淋巴瘤。
淋巴瘤第一个Btk抑制剂,伊曲替尼,于2013年被美国食品和药物管理局批准为
用于治疗B细胞恶性肿瘤的化疗的替代方案。成功的Btk抑制减缓了
通过减少转录调节因子NF-κB与DNA的活化和结合来抑制癌细胞增殖。的
最广泛使用的Btk抑制剂是伊曲替尼和第二代衍生物,其不可逆地结合Btk。
激酶结构域的ATP结合口袋。该口袋在酪氨酸激酶中高度保守,
因此,治疗导致显著的脱靶副作用和耐药性,这是由于在细胞中的突变引起的。
结合位点这些因素需要Btk内的替代抑制位点来促进B细胞增殖。
癌症治疗Btk活化的关键和初始步骤是其质膜缔合,
PH域。PH结构域代表了一个有吸引力的抑制性靶标,因为存在低序列同源性
在班级中。然而,脂质特异性,PIP 3结合的化学计量以及它如何调节这些,
组装,全长Btk的功能性寡聚状态,所涉及的界面是未知的。目标
我的建议是确定脂质特异性,化学计量,膜的机制,
招募,和Btk的膜相关寡聚状态。通过定量
了解这些分子事件,我的目标是了解Btk在血浆中的功能,
膜是有规律的。我将使用古普塔实验室开发的工作流程直接检测蛋白质-蛋白质
和蛋白质-脂质相互作用。这将允许
我检测脂质与Btk相互作用的双层模拟血浆的脂质组成
膜以及膜结合Btk的低聚状态。我已经获得了初步的nativeMS
和囊泡缔合数据,其显示在体外与PS结合以及与双层缔合的能力
以PS依赖的方式。我将确定这种尚未定性的脂质的功能后果,
使用永生化B细胞系的相互作用。通过在PS清除剂存在下活化BCR,
我可以确定PS是否在BCR通路中起作用,使其成为抑制Btk的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel McAllister其他文献
Rachel McAllister的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}