Mechanisms of Inflammation in Sickle Cell Disease
镰状细胞病的炎症机制
基本信息
- 批准号:10604366
- 负责人:
- 金额:$ 55.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAmidesAnti-Inflammatory AgentsAntioxidantsBindingBiological AvailabilityBlood VesselsCellsCessation of lifeChronicClinicalComplexConsumptionDataDiseaseEndothelial CellsEnzymesGene ExpressionGenesGoalsHMGB1 geneHemoglobinHemolytic AnemiaHomozygoteHypoxiaImpairmentInfiltrationInflammationInflammatoryInjuryKnock-outKnockout MiceLungLung diseasesMediatingMediatorMolecularMouse StrainsMusMyeloid CellsNecrosisNervous System TraumaNitric OxideOutcomeOxidantsOxidative StressOxidoreductasePathway interactionsPatternPeptidesPermeabilityPeroxidasesPersonsPharmacologic SubstancePharmacologyPhysiologyPredispositionProductionProtein SPulmonary artery structureRelaxationReportingResearchRoleS-NitrosoglutathioneS-NitrosothiolsSickle CellSickle Cell AnemiaSickle HemoglobinStrokeSystemTamoxifenTertiary Protein StructureTestingVascular DiseasesVasodilationdesignexperimental studygene productimprovedinhibitorknockout geneliver injurymimeticsmultimodalityneutrophilnovelnovel therapeuticsorgan injuryrecruitsicklingsuicide inhibitorvaso-occlusive crisis
项目摘要
Project Summary/Abstract
Numerous studies show the mechanisms by which sickle cell disease (SCD) induces vasculopathy and
increases vasocongestion are complex and multifactorial. In this revised, renewal application, we hypothesize
that SCD induces vasculopathy as one of the first steps in the mechanism by which SCD increases vaso-
occlusion. Our studies show that SCD induces a destructive cycle that is initiated by MPO and propagated by
high mobility group box-1 (HMGB1), and one other inflammatory component that alters pulmonary physiology,
impairs vascular function, and increases vasocongestion.
Previously, we reported L-acetyl-lysyltyrosylcysteine amide (KYC) inhibits MPO, improves vascular function and
reduces liver injury induced by excessive vasocongestion in SCD mice. New studies suggest that KYC not only
reduces sickle RBC (sRBC) congestion but also increases the number of round sRBC in the lungs of SCD mice.
Mechanistic studies reveal that KYC isn't just an inhibitor of MPO toxic oxidant production, but rather, is a unique
tripeptide substrate that exploits MPO peroxidase activity to be converted into a novel anti-inflammatory agent
that inactivates HMGB1 and activates the cellular pathways that are responsible for antioxidant defense enzyme
expression in the lung. As KYC inhibits multiple inflammatory components in our hypothesized destructive cycle,
and even activates a component that mediates antioxidant gene expression, new studies using mechanistic
inhibitors are required for determine which components increase vasculopathy and vasocongestion in SCD.
While a systems pharmaceutical agent may be useful for treating multifactorial diseases, they cannot be used to
identify causal mechanisms directly. In this revised application, we hypothesize that SCD induces a destructive
cycle, mediated by at least three major components. Our working hypothesis is SCD induces a destructive cycle
that is composed of MPO, HMGB1 and a novel, dysregulate gene and together induce vasculopathy and
increase vasocongestion. By treating sickle mice, sickle MPO knockout (ko) mice, chimeric sickle Tamoxifen-
inducible HMGB1 ko mice and another chimeric sickle ko mice with highly selective mechanistic inhibitors we
will be able to determine if and the extent to which MPO, HMGB1 and the third gene product, alone and/or in
combination induces vasculopathy and increases vasocongestion. To assess vasculopathy, we will quantify
differences in pulmonary artery relaxation, pulmonary permeability, sRBC vasocongestion, and susceptibility of
each mouse strain to sRBC vasocongestion induced by hypoxia-reoxygenation injury (HRI) in Townes
homozygote sickle Hb (SS) wt SS Mpo ko mice, and chimeric SS novel gene ko mice. Our long-term goals are
to confirm the identities of each component and develop novel therapies aimed at improving vascular function
and reducing sRBC vasocongestion.
项目摘要/摘要
大量研究表明了镰状细胞疾病(SCD)诱导血管病和
血管结构的增加是复杂且多因素的。在此修订后的更新应用中,我们假设
SCD诱导血管病是SCD增加血管的机制的第一步之一
阻塞。我们的研究表明,SCD诱导了由MPO引发的破坏性循环,并通过
高移动性组Box-1(HMGB1),以及改变肺部生理学的其他炎症成分
损害血管功能并增加血管结构。
以前,我们报道了L-乙酰基乙酰二甲基半胱氨酸酰胺(KYC)抑制MPO,改善了血管功能和
减少SCD小鼠过度血管结构引起的肝损伤。新研究表明KYC不仅
减少了镰状RBC(SRBC)的拥塞,但也增加了SCD小鼠肺中圆形SRBC的数量。
机械研究表明,KYC不仅是MPO有毒氧化剂产生的抑制剂,而是独特的
利用MPO过氧化物酶活性将转化为新型抗炎剂的三肽底物
灭活HMGB1并激活负责抗氧化剂防御酶的细胞途径
在肺中的表达。由于KYC在我们假设的破坏性循环中抑制多种炎症成分时,
甚至激活介导抗氧化基因表达的成分,使用机械研究
确定哪些成分会增加SCD中的血管病和血管结构,需要抑制剂。
虽然系统药物可能对治疗多因素疾病有用,但它们不能用于
直接确定因果机制。在此修订的应用程序中,我们假设SCD引起了破坏性
循环,由至少三个主要组成部分介导。我们的工作假设是SCD引起的破坏性周期
由MPO,HMGB1和一种新颖的基因组成,共同诱导血管病和
增加血管结构。通过治疗镰状小鼠,镰刀MPO敲除(KO)小鼠,嵌合镰刀莫昔芬 -
可诱导的HMGB1 KO小鼠和另一只具有高选择性机械抑制剂的嵌合镰状KO小鼠我们
将能够单独和/或单独和/或IN确定MPO,HMGB1和第三个基因产物的程度以及在多大程度上
组合诱导血管病并增加血管结构。为了评估血管病,我们将量化
肺动脉松弛,肺渗透性,SRBC血管结构的差异和易感性
镇上缺氧 - 抗氧化损伤(HRI)诱导的每种小鼠血管结构
纯合子镰刀HB(SS)WT SS MPO KO小鼠和嵌合SS新型基因KO小鼠。我们的长期目标是
确认每个成分的身份并开发旨在改善血管功能的新型疗法
并减少SRBC血管结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirkwood Arthur Pritchard其他文献
Kirkwood Arthur Pritchard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirkwood Arthur Pritchard', 18)}}的其他基金
Mechanisms of Inflammation in Sickle Cell Disease
镰状细胞病的炎症机制
- 批准号:
10209615 - 财政年份:2016
- 资助金额:
$ 55.04万 - 项目类别:
Mechanisms of Inflammation in Sickle Cell Disease
镰状细胞病的炎症机制
- 批准号:
10380784 - 财政年份:2016
- 资助金额:
$ 55.04万 - 项目类别:
Novel Peptide MPO Inhibitors for Treating Atherosclerosis
治疗动脉粥样硬化的新型肽 MPO 抑制剂
- 批准号:
8046699 - 财政年份:2011
- 资助金额:
$ 55.04万 - 项目类别:
Novel Peptide MPO Inhibitors for Treating Atherosclerosis
治疗动脉粥样硬化的新型肽 MPO 抑制剂
- 批准号:
8208034 - 财政年份:2011
- 资助金额:
$ 55.04万 - 项目类别:
相似国自然基金
钯催化桥联C-C键活化反应合成中环至大环内酯和内酰胺
- 批准号:22371069
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
植物乳杆菌烟酰胺单核苷酸生物合成途径关键基因挖掘与调控机制研究
- 批准号:32302050
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于水溶性共轭聚电解质构筑的芳香聚酰胺膜及其长效抗氯机制
- 批准号:22376027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
谷氨酰胺通过调控髓核细胞糖酵解-AMPK乳酸化修饰抑制椎间盘退变的机制研究
- 批准号:82372437
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
腈水解酶的催化杂泛性机理解析及其在S-2,2-二甲基环丙烷甲酰胺合成中的应用
- 批准号:22308332
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Crosstalk between CES1 and PPAR gamma and LXR alpha in macrophages
巨噬细胞中 CES1 与 PPAR γ 和 LXR α 之间的串扰
- 批准号:
10359914 - 财政年份:2022
- 资助金额:
$ 55.04万 - 项目类别:
Developing Novel Soluble Epoxide Hydrolase Inhibitors for the Treatment of Alzheimer's Disease
开发用于治疗阿尔茨海默病的新型可溶性环氧化物水解酶抑制剂
- 批准号:
10412114 - 财政年份:2020
- 资助金额:
$ 55.04万 - 项目类别:
Developing Novel Soluble Epoxide Hydrolase Inhibitors for the Treatment of Alzheimer's Disease
开发用于治疗阿尔茨海默病的新型可溶性环氧化物水解酶抑制剂
- 批准号:
10663178 - 财政年份:2020
- 资助金额:
$ 55.04万 - 项目类别:
Developing Novel Soluble Epoxide Hydrolase Inhibitors for the Treatment of Alzheimer's Disease
开发用于治疗阿尔茨海默病的新型可溶性环氧化物水解酶抑制剂
- 批准号:
10032662 - 财政年份:2020
- 资助金额:
$ 55.04万 - 项目类别:
Developing Novel Soluble Epoxide Hydrolase Inhibitors for the Treatment of Alzheimer's Disease
开发用于治疗阿尔茨海默病的新型可溶性环氧化物水解酶抑制剂
- 批准号:
10261446 - 财政年份:2020
- 资助金额:
$ 55.04万 - 项目类别: