Regulation of Cytokine-Mediated Lung Inflammation

细胞因子介导的肺部炎症的调节

基本信息

项目摘要

Soluble TNFR1 was originally characterized as a proteolytically cleaved receptor ectodomain that is released by a receptor sheddase (JBC 283: 14177 - 81). This project has identified several new regulatory mechanisms for generation of soluble cytokine receptors that do not involve the proteolytic cleavage of receptor ectodomains. First, we hypothesized the existence of regulatory proteins that modulate TNFR1 release to the extracellular compartment. Utilizing a yeast-two hybrid approach, we identified ARTS-1 (Aminopeptidase Regulator of TNF Receptor Shedding) as a type II integral membrane protein that binds the full-length 55-kDa TNFR1 and promotes TNFR1 release from human airway and vascular endothelial cells (HUVEC) (JCI 2002; 110: 515-526). Second, we showed that human vascular endothelial cells constitutively release TNFR1 to the extracellular compartment primarily as a full-length, 55-kDa protein (PNAS 2004; 101: 1297-302). This finding lead to the discovery that full-length TNFR1 is released within the membranes of exosome-like vesicles via a zinc metalloprotease-dependent process that does not involve receptor sheddase activity. Thus, the release of TNFR1 exosome-like vesicles represents a novel, alternative mechanism for the release of cytokine receptors from cells that is distinct from the proteolytic cleavage of receptor ectodomains or the generation of alternatively spliced translation products(J Immunology 2004; 173: 5343-8). The physiological relevance of these observations was confirmed by the demonstration in human subjects of TNFR1 exosome-like vesicles in serum and bronchoalveolar lining fluid. Third, we showed that ARTS-1 promotes the release of soluble, cleaved forms of IL-6Ra (J Biol Chem 2003; 278: 28677-85) and IL-1RII (J Immunology 2003; 171: 6814-9). Thus, ARTS-1 regulates the release of three distinct cytokine receptor superfamilies, the TNF receptor superfamily (TNFR1), the class I cytokine receptor superfamily (IL-6Ra), and the immunoglobulin/Toll-like receptor superfamily (IL-1RII). We have also identified nucleobindin 2 (NUCB2, NEFA) as a calcium-dependent, ARTS-1-binding protein that associates with intracytoplasmic TNFR1 vesicles and is required for the constitutive release of TNFR1 within the membranes of exosome-like vesicles, as well the IL-1b-mediated, inducible proteolytic cleavage of TNFR1 (JBC 2006; 281: 6860-6873). Therefore, NUCB2 and ARTS-1 regulate two zinc metalloprotease-dependent mechanisms of cytokine receptor shedding, the sheddase-independent, constitutive release of exosome-like vesicles containing full-length TNFR1 receptors and the sheddase-dependent, inducible proteolytic cleavage of receptor ectodomains. This project has identified several new insights regarding the release of TNFR1 to the extracellular space: I. The regulation of TNFR1 release pathways appears to involve the trafficking of cytoplasmic TNFR1 vesicles. Vesicular trafficking is controlled by ADP-ribosylation factors (ARFs), which are active in the GTP-bound state and inactive when bound to GDP. ARF activation is enhanced by guanine nucleotide-exchange factors that catalyze replacement of GDP by GTP. Therefore, we investigated whether the brefeldin A (BFA)-inhibited guanine nucleotide-exchange proteins, BIG1 and/or BIG2, are required for TNFR1 release from HUVEC. Effects of specific RNA interference (RNAi) showed that BIG2, but not BIG1, regulated the release of TNFR1 exosome-like vesicles, whereas neither BIG2 nor BIG1 was required for the IL-1b-induced proteolytic cleavage of TNFR1 ectodomains. BIG2 co-localized with TNFR1 in diffusely distributed cytoplasmic vesicles and the association between BIG2 and TNFR1 was disrupted by BFA. Consistent with the preferential activation of class I ARFs by BIG2, ARF1 and ARF3 participated in the extracellular release of TNFR1 exosome-like vesicles in a non-redundant and additive fashion. Thus, we identified that theassociation between BIG2 and TNFR1 selectively regulates the extracellular release of TNFR1 exosome-like vesicles via an ARF1- and ARF3-dependent mechanism, but did not affect the inducible proteolytic cleavage of TNFR1 ectodomains (JBC 2007; 282: 9591 - 9599). II. BIG2, in addition to its role as an ARF-GEP, contains three A kinase-anchoring protein (AKAP) domains that may coordinate cAMP and ARF regulatory functions. Therefore, we hypothesized that BIG2 might regulate the release of TNFR1 exosome-like vesicles via its AKAP, as well as its Sec7 domains. Consistent with this hypothesis, we showed that 8-Br-cAMP induced the release of full-length, 55-kDa TNFR1 within exosome-like vesicles via a PKA-dependent mechanism. RNA interference was used to decrease specifically the levels of individual PKA regulatory subunits and demonstrate that RIIb modulates both the constitutive and cAMP-induced release of TNFR1 exosome-like vesicles. Consistent with its AKAP function, BIG2 was required for the cAMP-induced PKA-dependent release of TNFR1 exosome-like vesicles via a mechanism that involved the binding of RIIb to BIG2 AKAP domains B and C. This showed that both the constitutive and cAMP-induced release of TNFR1 exosome-like vesicles occur via PKA-dependent pathways that are regulated by the anchoring of RIIb to BIG2 via AKAP domains B and C. Thus, BIG2 regulates TNFR1 exosome-like vesicle release by two distinct mechanisms, as a guanine nucleotide-exchange protein that activates class I ARFs and as an AKAP for RIIb that localizes PKA signaling within cellular TNFR1 trafficking pathways (JBC 2008; 283: 25364-71). III. Co-immunoprecipitation experiments identified an association between ARTS-1 and RBMX (RNA-binding motif gene, X chromosome), a 43-kDa heterogeneous nuclear ribonucleoprotein. RNA interference attenuated RBMX expression, which reduced both the constitutive release of TNFR1 exosome-like vesicles and the IL-1beta-mediated inducible proteolytic cleavage of soluble TNFR1 ectodomains. Reciprocally, over-expression of RBMX increased TNFR1 exosome-like vesicle release and the IL-1beta-mediated inducible shedding of TNFR1 ectodomains. This identified RBMX as an ARTS-1-associated protein that regulates both the constitutive release of TNFR1 exosome-like vesicles and the inducible proteolytic cleavage of TNFR1 ectodomains (BBRC 2008; 371: 505-9). IV. Since TNFR1 exosome-like nanovesicles are released by human vascular endothelial cells, we hypothesized that they may circulate in human blood and modulate TNF-mediated inflammatory or immune events. TNFR1 exosome-like vesicles, with a diameter of 27- to 36-nm, were demonstrated in human serum by immunoelectron microscopy. Western blots of human plasma showed a 48-kDa TNFR1, which is consistent with a membrane-associated receptor. Gel exclusion chromatography revealed that the 48-kDa TNFR1 in human plasma did not fractionate with soluble proteins, but instead co-segregated with LDL particles on the basis of size. The 48-kDa TNFR1 in human plasma segregated independently from LDL particles by peak density, which demonstrates that TNFR1 exosome-like vesicles are distinct from LDL particles. Known exosome-associated proteins, ICAM-1, LAMP-1, and LAMP-2, co-segregated with the HDL fraction of human plasma, which suggests that TNFR1 exosome-like vesicles are also distinct from typical exosomes. The reduced size of the 48-kDa exosome-associated TNFR1, as compared with the 55-kDa TNFR1 associated with human vascular endothelial cells, reflected a reduced content of N-linked carbohydrates. These results show that human plasma contains 48-kDa TNFR1 exosome-like vesicles that fractionate with, but are distinct from, LDL particles, and display unique characteristics as compared to plasma- or endothelial cell-derived exosome-like vesicles (BBRC 2008 366: 579 - 584).
可溶性TNFR1最初以受体Sheddase释放的蛋白水解裂解受体外生域的特征(JBC 283:14177-81)。该项目已经确定了几种新的调节机制,用于生成不涉及受体外生域蛋白水解裂解的可溶性细胞因子受体。首先,我们假设将TNFR1释放到细胞外室的调节蛋白的存在。利用酵母 - 两种混合方法,我们确定了ARTS-1(TNF受体脱落的氨基肽酶调节剂)为II型积分膜蛋白,该膜蛋白结合了全长55-KDA TNFR1,并促进了TNFR1的TNFR1,并促进了人类气道和血管内皮细胞和血管内皮细胞(HUBEC)(HUBEC)(jCI 2002)。其次,我们表明人血管内皮细胞组成型将TNFR1释放到细胞外室,主要是全长55 kDa蛋白(PNAS 2004; 101:1297-302)。这一发现导致发现,发现全长TNFR1通过不涉及受体SHEDDase活性的锌金属蛋白酶依赖性过程在外泌体样囊泡的膜中释放。因此,TNFR1外生囊泡的释放代表了一种新型的,用于从细胞中释放细胞因子受体的替代机制,该机制与受体外生域的蛋白水解裂解不同或产生了剪接的翻译产物(J免疫学2004; 173:5343-8)。这些观察结果的生理相关性通过人类在血清和支气管肺泡内膜中的TNFR1外泌体样囊泡中的示范证实。第三,我们表明ARTS-1促进了IL-6RA的可溶性,分裂形式的释放(J Biol Chem 2003; 278:28677-85)和IL-1RII(J Immunology 2003; 171:6814-9)。因此,ARTS-1调节了三种不同的细胞因子受体超家族的释放,TNF受体超家族(TNFR1),I类细胞因子受体超家族(IL-6RA)和免疫球蛋白/Toll-toll-toll-like受体超级印记(IL-1RII)。我们还确定了核仁素2(nucb2,nefa)是一种依赖钙的ARTS-1结合蛋白,它与内胞浆内TNFR1囊泡相关,是在本质中释放TNFR1在膜中的膜中释放TNFR1所必需的。 2006; 281:6860-6873)。因此,NUCB2和ARTS-1调节了细胞因子受体脱落的两种锌金属蛋白酶依赖性机制,即与Sheddase独立的,含有全长TNFR1受体的外泌体样囊泡的组成型释放,具有全长TNFR1受体以及SHEDDase依赖性的,可诱导的,可诱导的蛋白质蛋白质裂解。 该项目已经确定了有关将TNFR1发布到细胞外空间的几个新见解: I. TNFR1释放途径的调节似乎涉及细胞质TNFR1囊泡的运输。囊泡运输受ADP-核糖基化因子(ARF)的控制,该因子在GTP结合状态下活跃,并且与GDP结合时不活跃。鸟嘌呤核苷酸交换因子增强了ARF激活,从而催化GTP替换GDP。因此,我们研究了BREFELDIN A(BFA)抑制的鸟嘌呤核苷酸 - 交换蛋白Big1和/或Big2是否需要从HUVEC释放TNFR1。特异性RNA干扰(RNAI)的影响表明,BIG2而不是BIG1调节TNFR1外泌体样囊泡的释放,而IL-1B诱导的TNFR1胞外域的蛋白水解裂解并不需要BIG2和BIG1。 BIG2与TNFR1在扩散分布的细胞质囊泡中共定位,BFA破坏了BIG2和TNFR1之间的关联。与BIG2,ARF1和ARF3对I类ARF的优先激活一致,以非冗余和添加的方式参与TNFR1外泌体样囊泡的细胞外释放。因此,我们确定了BIG2和TNFR1之间的theSsiation选择性地调节TNFR1外泌体样囊泡的细胞外释放通过ARF1和ARF3依赖机制,但并不影响诱导型蛋白水解裂缝TNFR1型tnfr1 ectodomains(JBC 2007; JBC 2007; 282:282:9599-9599-9599-9599-9599999999999) ii。 BIG2除了作为ARF-GEP的作用外,还包含三种激酶锚定蛋白(AKAP)结构域,可以协调营地和ARF调节功能。 因此,我们假设BIG2可能会通过其AKAP及其SEC7域调节TNFR1外泌体样囊泡的释放。与这一假设一致,我们表明8-Br-cAMP通过PKA依赖性机制在外泌体样囊泡中诱导了全长55 kDa TNFR1的释放。 RNA干扰用于特异性降低单个PKA调节亚基的水平,并证明RIIB调节了构型和cAMP诱导的TNFR1外泌体样囊泡的释放。 与其AKAP功能一致,BIG2是cAMP诱导的pKA依赖性释放TNFR1外泌体样囊泡所必需的因此,AKAP结构域B和C。因此,BIG2通过两种不同的机制来调节TNFR1外泌体样囊泡释放,作为一种鸟嘌呤核苷酸 - 交换蛋白,可激活I类ARFS和RIIB的AKAP,作为RIIB的AKAP,作为RIIB的AKAP,它将PKA定位于Cellular TNFR1运输途径内的PKA定位(JBC 2008; 253:2536:25364-71)。 iii。 共免疫沉淀实验确定了ARTS-1和RBMX(RNA结合基序基因,X染色体)之间的关联,这是一种43 kDa的异质核核糖核蛋白。 RNA干扰衰减的RBMX表达均减少了TNFR1外泌体样囊泡的组成型释放和IL-1BETA介导的诱导蛋白水解裂解的可溶性TNFR1成核局。相度地,RBMX的过表达增加了TNFR1外泌体样囊泡的释放,而IL-1Beta介导的TNFR1型contodomain的诱导型脱落。这将RBMX确定为与ARTS-1相关的蛋白质,可调节TNFR1外泌体样囊泡的本构释放和TNFR1型tnfr1型域的诱导蛋白水解裂解(BBRC 2008; 371; 371:505-9)。 iv。由于人血管内皮细胞释放了TNFR1外泌体样纳米植物,因此我们假设它们可能在人体血液中循环并调节TNF介导的炎症或免疫事件。 通过免疫电子显微镜在人血清中证明了TNFR1外泌体样囊泡,直径为27至36 nm。人血浆的蛋白质印迹显示出48 kDa TNFR1,与膜相关受体一致。凝胶排除色谱法表明,人血浆中的48 kDa TNFR1不是与可溶性蛋白分馏,而是根据大小与LDL颗粒共隔离。人等离子体中的48 kDa TNFR1通过峰密度独立于LDL颗粒隔离,这表明TNFR1外泌体样囊泡与LDL颗粒不同。已知的外泌体相关蛋白ICAM-1,LAMP-1和LAMP-2与人血浆的HDL分数共聚,这表明TNFR1外泌体样囊泡也与典型的外生体不同。与与人血管内皮细胞相关的55 kDa TNFR1相比,与48 kDa外泌体相关的TNFR1的尺寸减小,反映了N-链接的碳水化合物的含量降低。这些结果表明,人血浆包含48 kDa TNFR1外泌体样囊泡,与LDL颗粒分馏但与LDL颗粒不同,并且与血浆或内皮细胞源性外染色体样囊泡相比显示出独特的特征(BBRC 2008 366:579-584)。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identification of ARTS-1 as a novel TNFR1-binding protein that promotes TNFR1 ectodomain shedding.
鉴定 ARTS-1 是一种新型 TNFR1 结合蛋白,可促进 TNFR1 胞外域脱落。
  • DOI:
    10.1172/jci13847
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cui,Xinle;Hawari,Feras;Alsaaty,Sura;Lawrence,Marion;Combs,ChristianA;Geng,Weidong;Rouhani,FarshidN;Miskinis,Dianne;Levine,StewartJ
  • 通讯作者:
    Levine,StewartJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stewart J Levine其他文献

Stewart J Levine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stewart J Levine', 18)}}的其他基金

Characterization Of The Role Of Tumor Necrosis Factor In
肿瘤坏死因子作用的表征
  • 批准号:
    6541698
  • 财政年份:
  • 资助金额:
    $ 61万
  • 项目类别:
Characterization of the Role of Tumor Necrosis Factor in Asthma
肿瘤坏死因子在哮喘中作用的表征
  • 批准号:
    6228019
  • 财政年份:
  • 资助金额:
    $ 61万
  • 项目类别:
Regulation of Cytokine-Mediated Airway Inflammation
细胞因子介导的气道炎症的调节
  • 批准号:
    6809765
  • 财政年份:
  • 资助金额:
    $ 61万
  • 项目类别:
Regulation of Cytokine-Mediated Lung Inflammation
细胞因子介导的肺部炎症的调节
  • 批准号:
    7594401
  • 财政年份:
  • 资助金额:
    $ 61万
  • 项目类别:
Regulation of Cytokine-Mediated Lung Inflammation
细胞因子介导的肺部炎症的调节
  • 批准号:
    7158515
  • 财政年份:
  • 资助金额:
    $ 61万
  • 项目类别:
Regulation of Cytokine-Mediated Lung Inflammation
细胞因子介导的肺部炎症的调节
  • 批准号:
    7321602
  • 财政年份:
  • 资助金额:
    $ 61万
  • 项目类别:
Characterization of the Role of Tumor Necrosis Factor in Asthma
肿瘤坏死因子在哮喘中作用的表征
  • 批准号:
    6432695
  • 财政年份:
  • 资助金额:
    $ 61万
  • 项目类别:
Regulation of Cytokine-Mediated Airway Inflammation
细胞因子介导的气道炎症的调节
  • 批准号:
    6966973
  • 财政年份:
  • 资助金额:
    $ 61万
  • 项目类别:
Characterization Of The Role Of Tumor Necrosis Factor In
肿瘤坏死因子作用的表征
  • 批准号:
    6690542
  • 财政年份:
  • 资助金额:
    $ 61万
  • 项目类别:

相似国自然基金

Arf6介导CCL18促进乳腺癌转移的机制研究
  • 批准号:
    81602331
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
ARL15基因与2型糖尿病合并大血管病变遗传易感性关系及机制研究
  • 批准号:
    81460158
  • 批准年份:
    2014
  • 资助金额:
    47.0 万元
  • 项目类别:
    地区科学基金项目
ADP-核糖基化因子在肠道病毒71型复制中的作用
  • 批准号:
    31300154
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REGULATION OF THE MACROPHAGE INFLAMMATORY PHENOTYPE IN ARDS
ARDS 中巨噬细胞炎症表型的调节
  • 批准号:
    10094230
  • 财政年份:
    2018
  • 资助金额:
    $ 61万
  • 项目类别:
New Therapies to Restore Vascular Integrity During Sepsis
脓毒症期间恢复血管完整性的新疗法
  • 批准号:
    9277547
  • 财政年份:
    2016
  • 资助金额:
    $ 61万
  • 项目类别:
New Therapies to Restore Vascular Integrity During Sepsis
脓毒症期间恢复血管完整性的新疗法
  • 批准号:
    9177104
  • 财政年份:
    2016
  • 资助金额:
    $ 61万
  • 项目类别:
ADP-ribosylation Cycles
ADP-核糖基化循环
  • 批准号:
    10008750
  • 财政年份:
  • 资助金额:
    $ 61万
  • 项目类别:
Regulation of Cytokine-Mediated Lung Inflammation
细胞因子介导的肺部炎症的调节
  • 批准号:
    7594401
  • 财政年份:
  • 资助金额:
    $ 61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了