High Performance Single Crystal Ultrasound Device for Medical Imaging

用于医学成像的高性能单晶超声设备

基本信息

  • 批准号:
    7668278
  • 负责人:
  • 金额:
    $ 9.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-15 至 2011-03-14
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Ultrasonic imaging offers an important tool for clinical diagnosis. Compared to other imaging modalities, it is more cost-effective, non-invasive, capable of real-time operation, and portable while providing images of comparable quality and resolution. Low frequency (<20 MHz) ultrasonic transducers have been widely used in areas including cardiac, pediatrics, abdomen, vascular and urology. On the other hand, high frequency (>20 MHz) ultrasonic transducers produce images of high resolution in both axial and lateral directions, providing improved diagnosis for many diseases and better monitoring of medical treatments. It is gaining acceptance as a clinical tool for the examination of the anterior segment of the eye, skin and intravascular imaging. For an ultrasonic transducer the most critical component is the piezoelectric element, whose performance is largely determined by the electrical properties of the piezoelectric material. Piezoelectric single crystals such as lead magnesium niobate - lead titanate (PMN-PT) have superior dielectric and piezoelectric properties suitable for medical ultrasound with notable advantages of broad bandwidth and high sensitivity. PMN-PT crystal based transducers have demonstrated improved performance characteristics in both low and high frequency medical ultrasound applications. However, the thermal and electrical reliability of PMN-PT remains a concern. To improve the robustness and performance of crystal based transducers, we have recently developed a new piezoelectric single crystal in the ternary system lead indium niobate - lead magnesium niobate - lead titanate (PIN-PMN- PT). In addition to the excellent dielectric and piezoelectric properties, the ternary PIN-PMN-PT crystal exhibits improved thermal (TR/T up to 117 0C) and electrical (EC > 5 kV/cm) stability compared to the binary PMN-PT crystal (TR/T ~ 85 0C, EC ~ 2.5 kV/cm). The ternary PIN-PMN-PT crystal system is promising for further property improvements of piezoelectric single crystals and crystal based transducers. In the Phase I project, we propose to grow ternary PIN-PMN-PT crystals of refined compositions with further improved thermal and electrical reliability while maintaining the advantages of piezoelectric single crystals. In addition, we will attempt to grow the new crystals along the [001] crystallographic direction and in large sizes, both of which are prerequisites for the future commercialization of the new crystals of improved properties. The dielectric, piezoelectric and elastic properties of the new crystal will be systematically characterized to provide key material parameters for its application. Low frequency (5-20 MHz) PIN-PMN-PT crystal transducer and high frequency composite PIN-PMN-PT transducer with 40-60 MHz will be fabricated in the phase I. The acoustic matching layers, backing layers and dicing pattern will be investigated in detail. Related characterizations of transducer will be carried out at the Resource Centre on Medical Ultrasonic Transducer Technology at the University of Southern California, the subcontract of this proposed Phase I research. The accomplishment of the proposed work will significantly improve the thermal stability and robustness for crystal based transducers of high performance. Success of this research and development will impact the diagnostic ultrasound imaging of low and high frequencies by improving bandwidth and sensitivity for transducers based on the traditional PZT ceramics or PVDF polymers while providing enhanced thermal and electrical robustness over PMN-PT based transducers. High frequency ultrasound can be used in the diagnosis and differentiation of ophthalmologic conditions such as intraocular tumors and orbital tumors. This diagnostic capability would benefit substantially from improved spatial resolution in three-dimensional C-mode images that would become available. This SBIR project will significantly improve the thermal and electrical reliability, and performance characteristics for low and high frequency medical ultrasonic transducers, and create a new avenue for eye imaging to the giant marketing of diagnostic ultrasound by MEMs technology. PUBLIC HEALTH RELEVANCE: This project focuses on the development of new ternary PIN-PMN-PT piezoelectric single crystals for biomedical ultrasound imaging applications. Broadband ultrasound transducers of lower frequency (e.g., 5-20 MHz) and high frequency (e.g., 40-60 MHz) using the new single crystal will be fabricated.
描述(由申请人提供):超声成像为临床诊断提供了重要工具。与其他成像方式相比,它更具成本效益,非侵入性,能够实时操作,便携式,同时提供可比的质量和分辨率的图像。低频(<20 MHz)超声换能器已广泛应用于心脏、儿科、腹部、血管和泌尿外科等领域。另一方面,高频(>20 MHz)超声换能器在轴向和横向方向上产生高分辨率的图像,为许多疾病提供改进的诊断和更好的医疗监测。它作为检查眼前节、皮肤和血管内成像的临床工具正在获得认可。对于超声换能器,最关键的部件是压电元件,其性能在很大程度上取决于压电材料的电性能。压电单晶如铌酸镁-钛酸铅(PMN-PT)具有上级的介电和压电性能,适合于医用超声,具有带宽宽、灵敏度高等显著优点。基于PMN-PT晶体的换能器在低频和高频医疗超声应用中都表现出了改进的性能特征。然而,PMN-PT的热和电可靠性仍然是一个问题。为了提高基于晶体的换能器的鲁棒性和性能,我们最近开发了一种新的三元系统中的压电单晶铅铟铋酸-铅镁铋酸-钛酸铅(PIN-PMN- PT)。除了优异的介电和压电性能外,与二元PMN-PT晶体(TR/T ~ 85 ℃,EC ~ 2.5 kV/cm)相比,三元PIN-PMN-PT晶体表现出改善的热稳定性(TR/T高达117 ℃)和电稳定性(EC > 5 kV/cm)。PIN-PMN-PT三元晶体系统在压电单晶和压电换能器的进一步性能改进方面具有广阔的应用前景。在第一阶段的项目中,我们建议生长三元PIN-PMN-PT晶体的细化组合物,进一步提高热和电气可靠性,同时保持压电单晶的优势。此外,我们将尝试沿[001]晶体学方向沿着生长大尺寸的新晶体,这两者都是未来商业化具有改进性能的新晶体的先决条件。新晶体的介电,压电和弹性特性将被系统地表征,为其应用提供关键的材料参数。第一阶段将制作低频(5-20 MHz)PIN-PMN-PT晶体换能器和40-60 MHz高频PIN-PMN-PT复合换能器。将详细研究声匹配层、背衬层和切割图案。传感器的相关表征将在南加州大学医疗超声传感器技术资源中心进行,该中心是拟议的第一阶段研究的分包合同。所提出的工作的完成将显着提高基于晶体的传感器的高性能的热稳定性和鲁棒性。这项研究和开发的成功将通过提高基于传统PZT陶瓷或PVDF聚合物的换能器的带宽和灵敏度,同时提供基于PMN-PT的换能器的增强的热和电气鲁棒性,来影响低频和高频的诊断超声成像。高频超声可用于诊断和鉴别眼科疾病,如眼内肿瘤和眼眶肿瘤。这种诊断能力将大大受益于三维C模式图像的空间分辨率的提高。该SBIR项目将显著改善低频和高频医疗超声换能器的热可靠性和电可靠性以及性能特性,并为MEMs技术的诊断超声的巨大市场开辟一条眼睛成像的新途径。公共卫生关系:本项目的重点是开发用于生物医学超声成像应用的新型三元PIN-PMN-PT压电单晶。较低频率的宽带超声换能器(例如,5-20 MHz)和高频(例如,40-60 MHz)将使用新的单晶制造。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian Tian其他文献

Jian Tian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 9.56万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 9.56万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 9.56万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 9.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了