Biomimetic Tactile Sensor for Prosthetics
用于假肢的仿生触觉传感器
基本信息
- 批准号:7671746
- 负责人:
- 金额:$ 11.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-04-15 至 2010-04-15
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAlgorithmsAmericanAmputationAppearanceBiologicalBiomimeticsDataDental PulpDevelopmentDevicesDiseaseEhlers-Danlos SyndromeElectrodesElectronicsElementsEngineeringEnvironmentEsthesiaFeedbackFingersGoalsHandHand functionsHumanInjection of therapeutic agentLimb structureLiquid substanceLogicMechanicsMembraneModalityMoldsMotionNail plateNervous System TraumaOperative Surgical ProceduresPatientsPerformancePhasePositioning AttributePrintingPropertyProsthesisPublishingResearchRobotRoboticsSensorySignal TransductionSiliconesSkinSpinal CordStructureStructure of nail of fingerSurfaceSystemTactileTechniquesTeleroboticsTemperatureTestingTextureTouch sensationTraumaUpper armVacuumWorkanalogbasecomputerized data processingconditioningcostdesignelectric impedancegrasphapticsimprovedinformation processingnovelpressureprototypepublic health relevancesealsensorvibration
项目摘要
DESCRIPTION (provided by applicant): Tactile feedback is essential for dexterous use of the hand. Physical therapists working to rehabilitate hands with neurological damage understand that tactile sensation is a key indicator of ultimate hand function. Neurophysiologists have identified that rapid reflexive adjustment of grip is essential for handling objects and depends on tactile feedback via the spinal cord. Autonomous robots can deal only with rigid objects in known orientations specifically because they lack tactile feedback. Engineers developing telerobotic manipulators have demonstrated improved performance when vibrotactile feedback is provided via "haptic displays" to the operator's hand. The limiting factor in all of these applications has been the absence of sensitive yet robust sensors that can be incorporated into anthropomorphic mechatronic fingers and used in the diverse and often hostile environments in which hands need to function. We have developed and demonstrated the basic feasibility of novel biomimetic tactile sensors that provide wide dynamic range sensing of normal and shear forces and microvibrations associated with slip and texture. All of their sensing elements and connections are located in and protected by the rigid core of a finger that is covered with skin, pulp and nail elements that are mechanically and cosmetically similar to biological fingers. In this project, we will complete the refinement of the material and transduction properties and integrate them with the signal processing electronics into self- contained modules. These modules can be incorporated mechanically and electronically into a variety of prosthetic and robotic hands intended to provide function for patients with loss of normal hand function as a result of trauma and disease. PUBLIC HEALTH RELEVANCE: Approximately 100,000 Americans are missing one or both arms or hands as a result of trauma or surgical amputation. The development of electromechanical replacement limbs has been hampered by the lack of robust sensors for touch and grip adjustment. We are developing prosthetic fingers that imitate the appearance, mechanical properties and sensory capabilities of human fingers.
描述(由申请人提供):触觉反馈对于灵巧地使用手是必不可少的。致力于修复手部神经损伤的物理治疗师明白,触觉是手部最终功能的关键指标。神经生理学家已经确定,快速反射性调整握力对处理物体至关重要,并依赖于通过脊髓的触觉反馈。自主机器人只能处理已知方向的刚性物体,因为它们缺乏触觉反馈。开发遥控机器人的工程师已经证明,当振动触觉反馈通过“触觉显示器”提供给操作者的手时,性能得到了改善。所有这些应用的限制因素是缺乏敏感而坚固的传感器,这些传感器可以集成到拟人化的机电手指中,并在各种各样的恶劣环境中使用,这些环境需要手的功能。我们已经开发并演示了新型仿生触觉传感器的基本可行性,该传感器提供了宽动态范围的法向和剪切力以及与滑移和纹理相关的微振动的传感。它们所有的传感元件和连接都位于手指的刚性核心中,并受到其保护,该手指被皮肤、牙髓和指甲元件覆盖,这些元件在机械上和美容上都与生物手指相似。在这个项目中,我们将完成材料和转导特性的改进,并将它们与信号处理电子器件集成到自包含的模块中。这些模块可以机械地和电子地整合到各种假肢和机器人手中,旨在为因创伤和疾病而失去正常手部功能的患者提供功能。公共卫生相关性:大约10万美国人由于创伤或手术截肢而失去了一只或两只手臂或手。由于缺乏可靠的触觉和抓握调节传感器,机电替代肢体的发展一直受到阻碍。我们正在开发假肢手指,模仿人类手指的外观,机械性能和感觉能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew T Borzage其他文献
Matthew T Borzage的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 11.79万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 11.79万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 11.79万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 11.79万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 11.79万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 11.79万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 11.79万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 11.79万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 11.79万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 11.79万 - 项目类别:
Continuing Grant