Study protein folding mechanism using a roadmap-based approach

使用基于路线图的方法研究蛋白质折叠机制

基本信息

  • 批准号:
    7880613
  • 负责人:
  • 金额:
    $ 24.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Our long-term objective is to map the genomic sequence onto protein structure and function. To achieve this goal, understanding the details of protein folding process is essential. Although the concept of a protein energy landscape has been established, one of the key challenges confronting the biophysical community is to obtain the direct information on protein folding process in atomic detail. We propose to develop a general computational approach based on our novel roadmap-based method to understand this process. Our general roadmap-based approach will give relative folding rates, locate folding pathways, obligatory intermediate states, off-pathway intermediates, transition states, and verify the cooperativity between binding and folding. Our approach will utilize a roadmap (or a graph) to capture most important features of protein conformation space and energy landscape as proposed in Aim 1, in turn, rich thermodynamic and kinetic information will be extracted from the roadmap and further analyzed by graph-based tools as proposed in Aim 2. We have recently obtained promising results in predicting protein folding pathways using our novel graph- theoretical approach enhanced reaction-path algorithm, which is part of our roadmap-based approach. We expect our roadmap-based approach will yield a comprehensive picture of folding mechanism. The proposed applications in Aim 3 will focus on several small proteins, which will allow us to learn fundamental principles regarding the following aspects of protein folding mechanism: (a) unifying features in protein folding; (b) hidden intermediate; (c) "downhill" folding; (d) cooperativity between binding and folding. Information concerning folding process is not only indispensible in mapping the genomic sequence onto protein structure and function, but also important in amyloid diseases and other human diseases associated with intrinsically disordered proteins. A deeper understanding of protein folding process can ultimately lead to better computational models for drug design. PUBLIC HEALTH RELEVANCE: Understanding protein folding process in atomic detail is indispensible in mapping the genomic sequence onto protein structure and function. Protein folding/unfolding and misfolding are implicated in amyloid diseases and other human diseases associated with intrinsically disordered proteins. A deeper understanding of protein folding process can ultimately lead to better computational models for drug design.
描述(由申请人提供):我们的长期目标是将基因组序列映射到蛋白质结构和功能上。为了实现这一目标,了解蛋白质折叠过程的细节是必不可少的。虽然蛋白质能量景观的概念已经建立,但生物物理学界面临的关键挑战之一是获得蛋白质折叠过程的原子细节的直接信息。我们建议基于我们新颖的基于路线图的方法开发一种通用的计算方法来理解这一过程。我们的一般基于路线图的方法将给出相对折叠率,定位折叠途径,强制性中间状态,非通路中间状态,过渡状态,并验证结合和折叠之间的协同性。我们的方法将利用路线图(或图表)来捕捉目标1中提出的蛋白质构象空间和能量景观的最重要特征,反过来,从路线图中提取丰富的热力学和动力学信息,并通过目标2中提出的基于图表的工具进一步分析。我们最近在使用我们新颖的图理论方法增强反应路径算法预测蛋白质折叠途径方面获得了有希望的结果,这是我们基于路线图的方法的一部分。我们期望我们的路线图为基础的方法将产生折叠机制的全面图片。Aim 3中提出的应用将集中在几种小蛋白质上,这将使我们能够了解蛋白质折叠机制的以下方面的基本原理:(a)蛋白质折叠的统一特征;(b)隐藏中间体;(c)“下坡”折叠;(d)装订与折叠的协同性。关于折叠过程的信息不仅是将基因组序列定位到蛋白质结构和功能上所必需的,而且在淀粉样蛋白疾病和其他与内在无序蛋白质相关的人类疾病中也很重要。对蛋白质折叠过程的深入了解最终可以为药物设计提供更好的计算模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shuanghong Huo其他文献

Shuanghong Huo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shuanghong Huo', 18)}}的其他基金

Study protein folding mechanism using a roadmap-based approach
使用基于路线图的方法研究蛋白质折叠机制
  • 批准号:
    8309181
  • 财政年份:
    2009
  • 资助金额:
    $ 24.98万
  • 项目类别:
Study protein folding mechanism using a roadmap-based approach
使用基于路线图的方法研究蛋白质折叠机制
  • 批准号:
    8510664
  • 财政年份:
    2009
  • 资助金额:
    $ 24.98万
  • 项目类别:
Study protein folding mechanism using a roadmap-based approach
使用基于路线图的方法研究蛋白质折叠机制
  • 批准号:
    8118803
  • 财政年份:
    2009
  • 资助金额:
    $ 24.98万
  • 项目类别:
Simulations on the early events of TTR amyloidogenesis
TTR 淀粉样变早期事件的模拟
  • 批准号:
    6846762
  • 财政年份:
    2005
  • 资助金额:
    $ 24.98万
  • 项目类别:
MD Study of Anthrax Edema Factor:Calmodulin Complexes
炭疽水肿因子:钙调蛋白复合物的MD研究
  • 批准号:
    6595705
  • 财政年份:
    2003
  • 资助金额:
    $ 24.98万
  • 项目类别:
COMPUTATIONAL STUDY OF HORMONE BINDING DETERMINANTS IN HGHBP COMPLEX
HGHBP 复合物中激素结合决定因素的计算研究
  • 批准号:
    6456718
  • 财政年份:
    2001
  • 资助金额:
    $ 24.98万
  • 项目类别:
COMPUTATIONAL STUDY OF HORMONE BINDING DETERMINANTS IN HGHBP COMPLEX
HGHBP 复合物中激素结合决定因素的计算研究
  • 批准号:
    6347880
  • 财政年份:
    2000
  • 资助金额:
    $ 24.98万
  • 项目类别:
COMPUTATIONAL STUDY OF HORMONE BINDING DETERMINANTS IN HGHBP COMPLEX
HGHBP 复合物中激素结合决定因素的计算研究
  • 批准号:
    6220250
  • 财政年份:
    1999
  • 资助金额:
    $ 24.98万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 24.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了