Entrainment-based mechanical ventilation

基于夹带的机械通气

基本信息

  • 批准号:
    7814084
  • 负责人:
  • 金额:
    $ 47.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-24 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This application addresses broad Challenge Area (15) Translational Science, and specific Challenge Topic, 15- RR-101* Applied Translational Technology Development. Mechanical ventilation is a life support procedure that is indicated for a wide variety of acute or chronic respiratory failure conditions. A major technological challenge facing mechanical ventilation in awake patients with spontaneous breathing activity is how to synchronize the ventilator rhythm with the patient's breathing effort smoothly and effectively. Dyssynchrony could lead to patient discomfort, increased work of breathing and risk of barotrauma, as well as decreases in pulmonary gas exchange efficiency and in cardiac output. Current generation of mechanical ventilators either control the breathing rhythm completely independent of the patient (ventilator-based ventilation), or let the patient trigger the ventilator breath by breath (patient-based ventilation). Neither approach is optimal. We propose a new mode of mechanical ventilation (entrainment-based mechanical ventilation, EMV) that is based on the classical physics theory of mutual entrainment between coupled oscillators, which may provide a cost- effective solution to the problem of patient-ventilator synchrony. This novel technique is motivated by our recent discovery that the brain circuits that control breathing are capable of entraining to a ventilator and adapting to it through learning and memory of the vagally-mediated Hering-Breuer inflation reflex. In EMV, the patient's spontaneous rhythm and the ventilator rhythm are phase-locked to one another on the same tempo, just like two individuals dancing together. The goal of this RC1 project is to transition the base technology from animal studies in the laboratory into the clinic, by first building and bench-testing a prototype of EMV that is suitable for clinical testing (Aim 1) and then carrying out a clinical trial to evaluate its safety and efficacy in comparison with other mechanical ventilation modes such as pressure support ventilation and proportional assist ventilation (Aim 2). Toward this goal, an interdisciplinary research team comprised of a basic researcher/ bioengineer (the PI), a clinician (Co-PI) and a technology developer (Covidien/Puritan-Bennett) has been formed to address the underlying scientific, engineering and clinical problems. Our primary goal is to verify that EMV can be delivered safely and is well tolerated by patients. Secondly, in comparison with pressure support ventilation and proportional assist ventilation we anticipate that entrainment-based ventilation will be: 1) less dependent on patient triggering, hence minimizing the work of breathing: 2) more robust to variabilities of respiratory mechanical parameters and thus should be more stable; 3) more cost-effective in that it does not require sophisticated servo mechanisms to control the instantaneous ventilator pressure. The results will provide valuable insights for further development and optimization of the EMV mode in order to maximize patient-ventilator synchrony in a cost-effective manner, and will lay the groundwork for large-scale clinical testing of its efficacy in comparison with other modes of mechanical ventilation in future. Mechanical ventilation is a basic life support procedure that is integral to any intensive care unit, emergency room, ambulatory unit or ventilator weaning facility, and is ubiquitous in many medical units and rehabilitation or long-term care facilities, including the patient's own home. PUBLIC HEALTH RELEVANCE: A major longstanding problem in delivering mechanical ventilation to patients who can still breathe on their own to some extent is how to synchronize the ventilator rhythm to the patient's spontaneous breathing rhythm so they do not "fight" each other to cause hazards. This project will evolve a novel mechanical ventilation technique called "entrainment-based mechanical ventilation" which will provide a safe and cost-effective solution to this clinical problem.
描述(由申请人提供):本申请涉及广泛的挑战领域(15)翻译科学,以及具体的挑战主题,15-RR-101*应用翻译技术开发。机械通气是一种生命支持程序,适用于各种急性或慢性呼吸衰竭情况。有自主呼吸活动的清醒患者机械通气面临的一个主要技术挑战是如何平稳有效地使呼吸机节律与患者的呼吸努力保持同步。不同步可能会导致患者不适、呼吸工作量增加和气压创伤的风险,以及肺气体交换效率和心输出量的下降。当前一代的机械呼吸机要么完全独立于患者控制呼吸节律(基于呼吸机的呼吸机),要么让患者通过呼吸触发呼吸机(基于患者的呼吸机)。这两种方法都不是最优的。基于耦合振子间相互夹带的经典物理理论,我们提出了一种新的机械通风模式(基于夹带的机械通风,EMV),为解决患者-呼吸机的同步性问题提供了一种经济有效的解决方案。这项新技术的动机是我们最近发现,控制呼吸的大脑回路能够吸入呼吸机,并通过学习和记忆迷走神经介导的Hering-Breuer充气反射来适应呼吸机。在EMV中,患者的自发节律和呼吸机节律在同一节奏上相互锁定,就像两个人一起跳舞。RC1项目的目标是将基础技术从实验室的动物研究转移到临床,首先建立并在台上测试适用于临床测试的EMV原型(目标1),然后进行临床试验,以评估其安全性和有效性,并与其他机械通气模式如压力支持通风和比例辅助通风(目标2)进行比较。为了实现这一目标,一个由基础研究人员/生物工程师(PI)、临床医生(Co-PI)和技术开发人员(Covidien/Puritan-Bennett)组成的跨学科研究团队已经成立,以解决潜在的科学、工程和临床问题。我们的主要目标是验证EMV可以安全地传递,并且患者对EMV的耐受性良好。其次,与压力支持通气法和比例辅助通气法相比,我们预计基于夹带的通气法将:1)减少对患者触发的依赖,从而最大限度地减少呼吸功:2)对呼吸机械参数的变化更健壮,因此应该更稳定;3)更具成本效益,因为它不需要复杂的伺服机构来控制瞬时呼吸机压力。研究结果将为EMV模式的进一步开发和优化提供有价值的见解,以便以经济有效的方式最大限度地实现患者-呼吸机的同步性,并将为未来与其他机械通气模式进行大规模临床测试其有效性奠定基础。机械通风是一种基本的生命支持程序,是任何重症监护病房、急诊室、门诊病房或呼吸机撤机设施不可或缺的一部分,在许多医疗单元和康复或长期护理设施中无处不在,包括患者自己的家。 公共卫生相关性:向仍能在一定程度上自主呼吸的患者提供机械通气的一个主要长期问题是如何使呼吸机节律与患者的自发呼吸节律保持同步,这样他们就不会相互“打架”而造成危险。该项目将发展一种新的机械通风技术,称为“基于夹带的机械通风”,将为这一临床问题提供安全和经济有效的解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHI-SANG POON其他文献

CHI-SANG POON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHI-SANG POON', 18)}}的其他基金

Brainstem mechanism underlying recurrent laryngospasm in Rett syndrome
Rett综合征复发性喉痉挛的脑干机制
  • 批准号:
    9175063
  • 财政年份:
    2016
  • 资助金额:
    $ 47.09万
  • 项目类别:
Brainstem mechanism underlying recurrent laryngospasm in Rett syndrome
Rett综合征复发性喉痉挛的脑干机制
  • 批准号:
    9264046
  • 财政年份:
    2016
  • 资助金额:
    $ 47.09万
  • 项目类别:
Entrainment-based mechanical ventilation to improve patient-ventilator synchrony
基于夹带的机械通气可改善患者与呼吸机的同步性
  • 批准号:
    9144423
  • 财政年份:
    2015
  • 资助金额:
    $ 47.09万
  • 项目类别:
Central mechanisms of respiratory adaptation to mechanical ventilation
呼吸适应机械通气的中心机制
  • 批准号:
    9130374
  • 财政年份:
    2015
  • 资助金额:
    $ 47.09万
  • 项目类别:
Entrainment-based mechanical ventilation
基于夹带的机械通气
  • 批准号:
    7938827
  • 财政年份:
    2009
  • 资助金额:
    $ 47.09万
  • 项目类别:
Nonlinear Analysis of Heart Rate Variability
心率变异性的非线性分析
  • 批准号:
    7820944
  • 财政年份:
    2009
  • 资助金额:
    $ 47.09万
  • 项目类别:
Xth Oxford Conference on Modeling and Control of Breathing
第十届牛津呼吸建模与控制会议
  • 批准号:
    7113960
  • 财政年份:
    2005
  • 资助金额:
    $ 47.09万
  • 项目类别:
Nonlinear Analysis of Heart Rate Variability
心率变异性的非线性分析
  • 批准号:
    7455251
  • 财政年份:
    2005
  • 资助金额:
    $ 47.09万
  • 项目类别:
Nonlinear Analysis of Heart Rate Variability
心率变异性的非线性分析
  • 批准号:
    7114961
  • 财政年份:
    2005
  • 资助金额:
    $ 47.09万
  • 项目类别:
Neuromorphic Electronic Model of Synaptic Plasticity
突触可塑性的神经形态电子模型
  • 批准号:
    7084439
  • 财政年份:
    2005
  • 资助金额:
    $ 47.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了