Mindboggling Shape Analysis and Identification
令人难以置信的形状分析和识别
基本信息
- 批准号:7882529
- 负责人:
- 金额:$ 32.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyAtlasesBase of the BrainBehavioral GeneticsBiomedical ResearchBrainBrain imagingBrain regionCharacteristicsClinicalClinical ResearchCommunitiesComputer softwareDataData AnalysesData SetDatabasesDescriptorDevelopmentEnvironmentEvaluationFaceFunctional Magnetic Resonance ImagingGoalsHumanIndividualKnowledgeLabelLiteratureMagnetic Resonance ImagingManualsMeasuresMedialMental HealthMethodsMetricModelingMorphologyPatientsPhysiologyPositron-Emission TomographyProbabilityProcessResearchResearch DesignResearch InfrastructureResearch PersonnelShapesSkeletonStructureSurfaceTimeVariantWorkbasebrain morphologybrain researchbrain shapebrain sizeimage processinginterestpublic health relevanceshape analysis
项目摘要
DESCRIPTION (provided by applicant): The specific aim of this proposal is to automatically identify/match brain features based on a geometric and parametric analysis of their shapes, by means of a Bayesian framework derived from the face recognition literature. Mindboggle, a freely available software package for performing automated anatomical brain labeling, will serve as the software infrastructure for implementing the Bayesian framework. The secondary aim is to further develop Mindboggle to automatically label an entire brain based on these probabilistic matches. These anatomical labels provide a consistent, convenient, and meaningful way to communicate, classify, and analyze biomedical research data. Clinical research applications of labeled regions include volumetric and shape analysis of brain regions over time or across conditions, and region-specific analysis of, for example, fMRI or PET activity data. There are two longterm research objectives: (1) establish a consistent, automatic, and fast method for labeling brains with an accuracy and precision comparable to that of manual labelers, and (2) obtain shape characteristics of anatomical regions, their variations and covariations in healthy subjects and patients, and their relationships to microstructure, connectivity, physiology, and functional activity for genetic, behavioral, developmental, and clinical research. Brain structures will be extracted from human brain MR image data and analyzed (described and compared) using geometrical and parametric approaches, for the purpose of identifying the brain structures to which the shapes correspond and characterizing their morphological variability across brains. Mindboggle algorithms for fragmenting these skeletons. Geometric analysis of shapes will include the gross shape descriptors such as mean distance between two coregistered shapes, their volumes, degree of overlap, etc. Parametric analysis will employ quantitative shape discrepancy metrics derived by an active surfaces model. These measures of similarity between shapes will be applied to a large dataset of manually labeled brain data and incorporated in a Bayesian framework for the purpose of estimating the probability of a given shape corresponding to a particular brain structure. Image processing will entail skeletonization of brain cortical folds combined with revised Additional contributions will be a dataset of manually labeled brains for research and educational purposes, and a database of individual brain morphological variability derived from this dataset. PUBLIC HEALTH RELEVANCE: Automatically characterizing the shapes of brain structures and labeling the anatomy of brain image data in an accurate, fast, and consistent manner is of immense value to clinical researchers interested in the application of brain imaging to mental health. Anatomical labels provide a consistent, convenient, and meaningful way to communicate, classify, and analyze biomedical research data. Clinical research applications include volume and shape analysis of brain regions over time, across conditions, and across groups of patients or healthy subjects, as well as analysis of fMRI or PET activity data acquired from these regions.
描述(由申请人提供):本提案的具体目的是通过源自人脸识别文献的贝叶斯框架,基于其形状的几何和参数分析自动识别/匹配大脑特征。Mindboggle是一个用于执行自动解剖大脑标记的免费软件包,将作为实现贝叶斯框架的软件基础设施。第二个目标是进一步开发Mindboggle,根据这些概率匹配自动标记整个大脑。这些解剖标签提供了一种一致、方便和有意义的方式来交流、分类和分析生物医学研究数据。标记区域的临床研究应用包括随时间或跨条件的脑区域的体积和形状分析,以及例如fMRI或PET活动数据的区域特异性分析。有两个长期研究目标:(1)建立一种一致的、自动的和快速的方法来标记大脑,其准确度和精确度与手动标记器相当,以及(2)获得健康受试者和患者中解剖区域的形状特征、它们的变化和协变,以及它们与遗传、行为、发育、和临床研究。将从人脑MR图像数据中提取大脑结构,并使用几何和参数方法进行分析(描述和比较),以识别形状对应的大脑结构并表征其在大脑中的形态学变化。分割这些骨架的令人难以置信的算法。形状的几何分析将包括总的形状描述符,如两个配准的形状之间的平均距离,它们的体积,重叠程度等参数分析将采用定量形状差异度量的活动表面模型。形状之间的相似性的这些度量将被应用于手动标记的大脑数据的大数据集,并被并入贝叶斯框架中,以估计给定形状对应于特定大脑结构的概率。图像处理将需要结合修订的大脑皮层褶皱的重新分类。额外的贡献将是一个用于研究和教育目的的手动标记大脑的数据集,以及一个来自该数据集的个体大脑形态变异性数据库。公共卫生关系:以准确、快速和一致的方式自动表征大脑结构的形状并标记大脑图像数据的解剖结构对于对大脑成像在心理健康中的应用感兴趣的临床研究人员具有巨大的价值。解剖标签提供了一种一致、方便和有意义的方式来交流、分类和分析生物医学研究数据。临床研究应用包括随着时间的推移,在各种条件下,以及在患者或健康受试者的群体中对大脑区域进行体积和形状分析,以及对从这些区域获取的fMRI或PET活动数据进行分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arno Klein其他文献
Arno Klein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arno Klein', 18)}}的其他基金
MINDBOGGLE AUTOMATED ANATOMICAL BRAIN LABELING WITH MULTIPLE ATLASES
使用多个图谱进行令人难以置信的自动大脑解剖标记
- 批准号:
8363449 - 财政年份:2011
- 资助金额:
$ 32.2万 - 项目类别:
MINDBOGGLE AUTOMATED ANATOMICAL BRAIN LABELING WITH MULTIPLE ATLASES
使用多个图谱进行令人难以置信的自动大脑解剖标记
- 批准号:
8171071 - 财政年份:2010
- 资助金额:
$ 32.2万 - 项目类别:
MINDBOGGLE AUTOMATED ANATOMICAL BRAIN LABELING WITH MULTIPLE ATLASES
使用多个图谱进行令人难以置信的自动大脑解剖标记
- 批准号:
7955682 - 财政年份:2009
- 资助金额:
$ 32.2万 - 项目类别:
MINDBOGGLE AUTOMATED ANATOMICAL BRAIN LABELING WITH MULTIPLE ATLASES
使用多个图谱进行令人难以置信的自动大脑解剖标记
- 批准号:
7724372 - 财政年份:2008
- 资助金额:
$ 32.2万 - 项目类别:
MINDBOGGLE AUTOMATED ANATOMICAL BRAIN LABELING WITH MULTIPLE ATLASES
使用多个图谱进行令人难以置信的自动大脑解剖标记
- 批准号:
7627736 - 财政年份:2007
- 资助金额:
$ 32.2万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 32.2万 - 项目类别:
Continuing Grant