Structural and evolutionary basis for insertion unidirectionality in RNA-guided DNA transposition systems
RNA引导的DNA转座系统中插入单向性的结构和进化基础
基本信息
- 批准号:10752287
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-16 至 2026-11-15
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffinityArchitectureBacteriaBindingBinding SitesBiochemicalBioinformaticsBiological AssayBiological ModelsCRISPR-associated transposonsClassificationCommunicationComplexConserved SequenceCritical ThinkingCryoelectron MicroscopyCystic FibrosisDNADNA Transposable ElementsDNA TransposonsDataDevelopmentDiseaseEMSAElementsEnsureExhibitsFoundationsGene DeliveryGene MutationGenesGeneticGenetic DiseasesGenomeGuide RNAInterdisciplinary StudyLearningLengthLocationMachine LearningMetagenomicsMiningMobile Genetic ElementsMolecularMolecular CloningMolecular ConformationMutagenesisPositioning AttributePropertyProteinsRNA SequencesRegulationResolutionResourcesScanningScientistSiteSpecificityStructureSystemTherapeuticTrainingTransposaseUniversitiesVariantVisualizationbacterial geneticscombatcomputational pipelinesfollow-upgene therapygenetic elementgenome editinginsightintegration siteinterestnext generationnovelrecruitskillsstructural biologytooltrend
项目摘要
PROJECT SUMMARY
CRISPR-associated transposons (CAST) represent a class of recently discovered bacterial genetic
elements that can perform programmable transposition. Using a user-provided RNA sequence, CASTs can
insert kilobases of DNA into specific sites in the genome, a crucial function that cannot be achieved with
current state of the art genome editing tools. Thus, CASTs match an unmet need in therapeutics for genetic
disorders plagued by gene mutations like cystic fibrosis. To optimize CASTs for application in next-generation
genome editing tools, a comprehensive understanding of how it inserts DNA is required. Of particular interest
is its unidirectionality, referring to CAST’s propensity to insert DNA in a single orientation. While
unidirectionality is a coveted feature of CASTs, its mechanism remains uncharacterized. Components implied
to contribute to this mechanism are the signature ends flanking the element. These ends recruit proteins, TnsB
in model system shCAST, that excise the transposon from its original location to prepare it for insertion
elsewhere. However, these ends are different in sequence, described in this proposal as “asymmetric”,
suggesting that TnsB performs different functions at each end that could be used to achieve unidirectionality.
This project proposes an interdisciplinary project that will identify key drivers for unidirectionality.
Specific aim 1 will use high-resolution cryo-electron microscopy (cryo-EM) to structurally visualize the shCAST
paired-end complex, a stage of transposition involving interactions between the asymmetric ends facilitated by
TnsB. This structure will identify key features that distinguish the ends from one another from a 3-D standpoint.
Follow-up characterization of the transpososome, the next stage of transposition involving the assembly of the
paired-end complex with other CAST proteins, will recognize how the identified features convey
unidirectionality. Specific aim 2 will utilize bioinformatics to identify features conserved across all CAST
systems that establish orientation specificity. Metagenomic mining will scan the vast trove of sequence data to
compile a comprehensive list of CAST elements. This expansive set enables evolutionary analysis of CASTs to
determine global trends maintaining unidirectionality and will define each element’s mechanism based on
retention of conserved features. Biochemical assays will be used to validate features identified in either aim.
The PI will be extensively trained in both cryo-EM and bioinformatics skills along with critical thinking to
ensure seamless integration of experimental and computational results. The Kellogg and Feschotte labs at
Cornell University have access to a wide-ranging set of resources that ensure mastery of these skills and will
also emphasize soft skills like communication to ensure the PI’s development as a well-rounded scientist.
Together, this proposal sets forth a plan to comprehensively understand CAST unidirectionality and its
associated mechanisms, enabling its optimization and implementation in genome editing tools of interest.
项目总结
CRISPR相关转座子(CAST)代表了一类新发现的细菌基因
可以执行可编程换位的元素。使用用户提供的RNA序列,CAST可以
将千碱基的DNA插入基因组中的特定位置,这是一项无法通过
目前最先进的基因组编辑工具。因此,管型符合基因疗法中尚未得到满足的需求
受基因突变困扰的疾病,如囊性纤维化。为下一代应用优化投射
基因组编辑工具,需要全面了解它是如何插入DNA的。特别感兴趣的
是它的单向性,指的是CAST倾向于在一个方向上插入DNA。而当
单向性是CAST的一个令人垂涎的特征,其机制仍未确定。隐含的组件
促成这一机制的是元素两侧的签名端。这些末端招募蛋白质,TnsB
在模拟系统shCAST中,将转座子从其原始位置切除,以便为插入做准备
其他地方。然而,这些末端在顺序上是不同的,在本提案中被描述为“不对称”,
这表明TnsB在每一端执行不同的功能,可以用来实现单向性。
该项目提出了一个跨学科项目,该项目将确定单向性的关键驱动因素。
特殊目标1将使用高分辨率冷冻电子显微镜(Cryo-EM)对shCAST进行结构可视化
配对末端复合体,涉及不对称末端之间的相互作用的转位阶段,由
TnsB。这种结构将从3D的角度识别将末端彼此区分开来的关键特征。
转座体的后续特征,转座的下一阶段涉及组装
与其他CAST蛋白配对的末端复合体,将识别识别的特征如何传达
单向性。特定目标2将利用生物信息学来识别所有演员组中保存的特征
建立定向专一性的系统。元基因组挖掘将扫描巨大的序列数据宝库,以
编制一份全面的演员阵容元素清单。此扩展集允许对类型转换进行进化分析
确定保持单向性的全球趋势,并将根据以下内容定义每个要素的机制
保留保留的特征。生化分析将用于验证在这两个目标中确定的特征。
PI将接受冷冻-EM和生物信息学技能以及批判性思维的广泛培训
确保实验和计算结果的无缝集成。凯洛格和费肖特实验室位于
康奈尔大学可以获得广泛的资源,以确保掌握这些技能和意志
还强调沟通等软技能,以确保PI发展为全面发展的科学家。
综上所述,这项建议提出了一项全面理解CAST单向性及其
相关机制,使其能够在感兴趣的基因组编辑工具中进行优化和实施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vinh H Truong其他文献
Vinh H Truong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Continuing Grant














{{item.name}}会员




