Characterizing neuroimaging 'brain-behavior' model performance bias in rural populations
表征农村人口神经影像“大脑行为”模型的表现偏差
基本信息
- 批准号:10752053
- 负责人:
- 金额:$ 3.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdolescentAffectAgeAlgorithmsAreaAttentionBehaviorBrainClinicalCognitionCognitiveCognitive deficitsComplexDataData CollectionData SetDevelopmentDiagnosisEmerging TechnologiesEnsureEquityExclusionFaceFunctional Magnetic Resonance ImagingGeographic LocationsGeographyHealthcareHumanIndividualLearningMachine LearningMeasuresMental HealthMental disordersModelingModernizationMoodsNatureOutcomeParticipantPatternPerformancePhysiciansPopulationPsychiatryResearchRestRuralRural PopulationSamplingSampling StudiesScientistSiteSymptomsTechniquesTechnologyTestingTrainingTranslationsTreatment outcomeUnderrepresented PopulationsUnited StatesValidationbrain basedbrain behaviorcareerclinical decision-makingcognitive developmentcognitive taskconnectomeconnectome based predictive modelingdevelopmental diseasedisparity reductionhealth disparitymachine learning modelmetropolitanmodel designneuroimagingnovelpredictive modelingpreventpsychiatric symptomrural arearural health disparitiesrural patientsrural residencetooltreatment choiceurban areaurban residenceverbalvirtual
项目摘要
PROJECT SUMMARY
Nearly one-fifth of the Unites States population resides in a rural region, and approximately one-fifth of those
residents suffers from a mental illness. While these rates of mental illness are similar to urban areas, individuals
living in rural regions face a disproportionate burden of negative psychiatric outcomes. Modern advances in
psychiatric research have focused on using machine learning and human neuroimaging to predict diagnoses
and treatment outcomes. However, recent evidence suggests that machine learning models themselves may
drive health disparities through performance bias. Specifically, clinical decision-making models created in
majority populations may not perform as well in populations that were underrepresented during the creation of
the model (e.g., poorer likelihood of choosing the correct treatment if patients are rural). Given that virtually all
neuroimaging ‘brain-behavior’ predictive models in psychiatry research are generated from data collected in
highly populated metropolitan areas, this study will evaluate ‘brain-behavior’ models for performance bias in rural
populations. It will also investigate means of eliminating this bias that creates further health disparities in rural
populations. In Aim 1, I will use neuroimaging data from 9,811 individuals in the Adolescent Brain and Cognitive
Development Study to create a ‘brain-behavior’ predictive model of cognition. In Aim 2, I will evaluate this model
for urban-rural performance bias and pursue strategies to reduce model bias. This study will have important
implications for understanding how algorithms in healthcare drive health disparities and how we can reduce
these disparities by designing models that perform equitably within underrepresented populations.
项目摘要
近五分之一的美国人口居住在农村地区,其中大约五分之一的人居住在农村地区。
居民患有精神疾病。虽然这些精神疾病的发病率与城市地区相似,
生活在农村地区的人面临着不成比例的负面精神病后果负担。现代进步,
精神病学研究集中在使用机器学习和人类神经成像来预测诊断
和治疗结果。然而,最近的证据表明,机器学习模型本身可能
通过绩效偏见推动健康差距。具体而言,在2008年创建的临床决策模型
大多数人口可能在创建期间代表性不足的人口中表现不佳
该模型(例如,如果患者在农村,选择正确治疗的可能性较小)。鉴于几乎所有
精神病学研究中的神经成像“大脑行为”预测模型是从收集的数据中产生的,
在人口密集的大都市地区,这项研究将评估“大脑行为”模型在农村的表现偏差
人口。它还将调查消除这种偏见的方法,这种偏见在农村地区造成了进一步的健康差距。
人口。在目标1中,我将使用来自青少年大脑和认知研究中的9,811名个体的神经成像数据。
发展研究,以创建一个“大脑行为”的认知预测模型。在目标2中,我将评估这个模型
为城乡绩效偏差,并追求战略,以减少模型偏差。这项研究将具有重要意义
理解医疗保健中的算法如何驱动健康差异以及我们如何减少
通过设计在代表性不足的人群中公平表现的模型来消除这些差异。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendan Adkinson其他文献
Brendan Adkinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 3.26万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 3.26万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 3.26万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 3.26万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 3.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 3.26万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 3.26万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 3.26万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 3.26万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 3.26万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




