Development of excited-state bond homolysis as a key step for Ni catalysis

激发态键均裂的发展作为镍催化的关键步骤

基本信息

项目摘要

Methods for bond construction enabling the synthesis of complex molecular scaffold are of key interest to the pharmaceutical industry. To this end, Ni catalysis has emerged as a versatile tool for the construction of C(sp2)– C(sp2), C(sp3)–C(sp2), and C(sp3)–C(sp3) bonds. The success of Ni in accomplishing these transformations lies in the ability of Ni to engage in both single- and two-electron processes – cycling through 0, I, II, and III oxidation states. As a result, in addition to canonical two-electron processes (migratory insertion, b-hydride elimination, etc.), fundamental steps such as abstractions, radical captures, and electron transfers are often encountered in Ni catalysis. Ni catalysis has also served as a fruitful platform for the integration of photochemistry in transition- metal catalysis. Recently, our group found that upon irradiation with light, aryl NiII(bpy) complexes can undergo excited-state bond homolysis to generate C(sp2) radicals. These initial stoichiometric studies demonstrate that light energy can be selectively directed to Ni to generate highly reactive intermediates from feedstock chemical precursors. We propose leveraging photoelimination from NiII as a general step to be employed in Ni catalysis. Traditional development of cross-coupling reactions focuses around achieving new outcomes from sequences of known fundamental processes. This proposal is unique as it is based on the development of a new fundamental step for Ni catalysis. Our efforts will capitalize on the interplay between single- and two- electron processes accessible to Ni to address limitations in selectivity and reactivity in the present literature. The research described herein will be comprised of three aims: (1) developing approaches for improving quantum yield of excited-state Ni bond homolysis processes, (2) explore and extend the scope of organic radical centers accessed by photoelimination, and (3) employing photoelimination as fundamental step in Ni catalysis. All three aspects will be explored concurrently and together represent an exciting new direction in the field of first-row transition metal catalysis.
能够合成复杂分子支架的键构建方法是本领域技术人员的关键兴趣。 医药行业。为此,Ni催化已经成为构建C(sp2)- C(sp2)、C(sp3)-C(sp2)和C(sp3)-C(sp3)键。倪成功地完成了这些转变, Ni参与单电子和双电子过程的能力-通过0、I、II和III氧化循环 states.因此,除了典型的双电子过程(迁移插入,b-氢化物消除, 等等),基本的步骤,如抽象,自由基捕获,电子转移,经常遇到的, Ni催化。镍催化也是一个富有成效的平台,为光化学的整合过渡- 金属催化最近,我们的研究小组发现,在光照射下,芳基NiII(bpy)配合物可以发生 激发态键均裂以产生C(sp2)自由基。这些初步的化学计量研究表明, 光能可以选择性地导向Ni以从原料化学品产生高活性中间体, 前体我们建议利用光消除从镍作为一个通用的步骤,在镍催化。 传统的交叉偶联反应的发展集中在从序列中获得新的结果 已知的基本过程。这项建议是独一无二的,因为它是基于一个新的发展, 镍催化的基础步骤。我们的努力将利用单电子和双电子之间的相互作用 方法可访问的镍,以解决在选择性和反应性的限制,在本文献中。的 本文所述的研究将包括三个目标:(1)开发提高量子效率的方法。 激发态Ni键均裂过程的产率;(2)探索和扩展有机自由基中心的范围 (3)采用光消除作为Ni催化的基本步骤。所有三 这些方面将同时进行探索,共同代表第一排领域令人兴奋的新方向 过渡金属催化

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Cusumano其他文献

Alexander Cusumano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

不对称Tandem catalysis 合成手性仲醇
  • 批准号:
    20643008
  • 批准年份:
    2006
  • 资助金额:
    8.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Digital chemistry and catalysis: redefining reactions in confined systems
数字化学和催化:重新定义受限系统中的反应
  • 批准号:
    FL220100059
  • 财政年份:
    2024
  • 资助金额:
    $ 6.87万
  • 项目类别:
    Australian Laureate Fellowships
Beyond thiols, beyond gold: Novel NHC-stabilized nanoclusters in catalysis
超越硫醇,超越金:催化中新型 NHC 稳定纳米团簇
  • 批准号:
    23K21120
  • 财政年份:
    2024
  • 资助金额:
    $ 6.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Innovating Oxidative C–H Functionalization via Rhodium and Cobalt Catalysis
职业生涯:通过铑和钴催化创新氧化 C–H 功能化
  • 批准号:
    2340731
  • 财政年份:
    2024
  • 资助金额:
    $ 6.87万
  • 项目类别:
    Continuing Grant
Conference: Artificial Intelligence for Multidisciplinary Exploration and Discovery (AIMED) in Heterogeneous Catalysis: A Workshop
会议:多相催化中的多学科探索和发现人工智能(AIMED):研讨会
  • 批准号:
    2409631
  • 财政年份:
    2024
  • 资助金额:
    $ 6.87万
  • 项目类别:
    Standard Grant
Stereocontrolled Glycosylation under Cooperative Catalysis
协同催化下的立体控制糖基化
  • 批准号:
    2350461
  • 财政年份:
    2024
  • 资助金额:
    $ 6.87万
  • 项目类别:
    Standard Grant
CO2-coupled photothermal catalysis on superlattice structures
超晶格结构上的 CO2 耦合光热催化
  • 批准号:
    DP240102707
  • 财政年份:
    2024
  • 资助金额:
    $ 6.87万
  • 项目类别:
    Discovery Projects
Dynamics and catalysis in integral membrane pyrophosphatases
整合膜焦磷酸酶的动力学和催化
  • 批准号:
    BB/T006048/2
  • 财政年份:
    2024
  • 资助金额:
    $ 6.87万
  • 项目类别:
    Research Grant
"In-Crystallo" Solid-State Molecular Organometallic Chemistry of Methane, Ethane and Propane. Synthesis, Structures and Catalysis in Single-Crystals
甲烷、乙烷和丙烷的“晶体内”固态分子有机金属化学。
  • 批准号:
    EP/W015498/2
  • 财政年份:
    2024
  • 资助金额:
    $ 6.87万
  • 项目类别:
    Research Grant
Design and Evolution of Photoenzymes for Triplet Energy Transfer Catalysis
三重态能量转移催化光酶的设计和进化
  • 批准号:
    EP/Y023722/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.87万
  • 项目类别:
    Research Grant
TTS APC: Transborylation: A Turnover Strategy for Asymmetric p-Block Catalysis
TTS APC:硼基转移:不对称 p 嵌段催化的周转策略
  • 批准号:
    EP/Y029321/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.87万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了