Causal mechanisms of anesthetic induction and emergence in human cortical organoids
人类皮质类器官麻醉诱导和苏醒的因果机制
基本信息
- 批准号:10752425
- 负责人:
- 金额:$ 7.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcetylcholineAminobutyric AcidsAnesthesia proceduresAnestheticsAnimal ModelAreaAssessment toolAwarenessBrainCerebrumChemosensitizationClinicalComaComplexConsciousDeliriumDevelopmentDopamineEmbryoEntropyEventExhibitsExposure toFeedbackFoundationsFrequenciesGeneral AnesthesiaHistamineHumanHypothalamic structureIn VitroInterventionLateralLength of StayMediatingModelingMolecularNeurogliaNeuronsNorepinephrineOrganoidsPathologicPatientsPersistent Vegetative StatePlayProcessPropofolProtocols documentationRecoveryResearchRoleStructureSystemTestingThalamic structureTimeUnconscious StateVegetative Statesawakebasal forebraincare costscholinergicexcitatory neuronexperiencehigh throughput screeninghuman pluripotent stem cellhuman tissuehypocretinimprovedin vivoinduced pluripotent stem cellinhibitory neuronlocus ceruleus structuremammilloinfundibular nucleus structuremethod developmentneuralneural circuitneuroregulationnoradrenergicnovelnovel therapeuticsphenomenological modelsraphe nucleireceptorrespiratoryscreeningtool
项目摘要
PROJECT SUMMARY
This project aims to use human cortical organoids, which are cortex-like structures generated in vitro from
human induced pluripotent stem cells (hiPSCs), to resolve outstanding questions in our understanding of
causal mechanisms underlying the mesoscale phenomenology of anesthetic induction (AI) and anesthetic
emergence (AE). Millions of patients undergo general anesthesia every year, but the mechanisms by which
anesthetic drugs give rise to the hallmarks of AI remain unresolved. Even less well understood are the
mechanisms by which the brain emerges from anesthesia - a process over which clinicians have almost no
control, and which is frequently associated with complications such as emergence delirium, respiratory events,
and delayed emergence, which results in prolonged hospital stays and increased cost of care. In addition, 1-2
per every 1000 patients will experience intraoperative awareness with explicit recall, for reasons that are not
understood. While a number of hypotheses regarding the mechanisms of AI and AE have been put forward,
these hypotheses are still debated because of complex inter-circuit interactions during AI and AE in the intact
brain. In particular, it is widely believed that the major cause of AI is the potentiation of cortical GABAa
receptors, but it has been difficult to disentangle the effects of cortical GABAa potentiation from the subcortical
effects of anesthesia, which may likewise contribute to AI. Similarly, though it is generally believed that at least
one, if not several cortically projecting neuromodulatory structures - including the histaminergic
tuberomammillary nucleus of the hypothalamus, the cholinergic basal forebrain, the serotonergic raphe nuclei,
the orexinergic lateral hypothalamus, and the noradrenergic locus coeruleus - directly drive emergence from
anesthesia, these systems are densely interconnected and mutually excitatory. For this reason, in vivo
research has been unable to resolve which, if any, of these systems directly cause AE. A promising but
completely unexplored tool for resolving these questions are human cortical organoids. Our team has recently
developed a protocol for fusing together networks of excitatory and inhibitory cortical-like neurons derived from
hiPSCs. These fusion cortical organoids can recapitulate the oscillatory electric activity of the awake human
cortex, and our preliminary results suggest that these cortical organoids can mimic the mesoscale hallmarks of
AI when they are exposed to the anesthetic propofol. Importantly, cortical organoids consist of purely cortical-
like human tissue, and lack any influence from subcortical structures or neuromodulatory systems. This allows
us to use human cortical organoids to isolate cortical versus non-cortical causal mechanisms of both AI and
AE. Successful modeling of AI and AE in brain organoids would illustrate the utility of these structures in high-
throughput screening of novel drugs for inducing anesthesia or emergence from anesthesia, potentially even
on a single-patient basis. Additionally, this project would establish the potential for human brain organoids in
screening therapies for other states of unconsciousness, such as coma and persistent vegetative states.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Toker其他文献
Daniel Toker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Spatiotemporal dynamics of acetylcholine activity in adaptive behaviors and response patterns
适应性行为和反应模式中乙酰胆碱活性的时空动态
- 批准号:
24K10485 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural studies into human muscle nicotinic acetylcholine receptors
人体肌肉烟碱乙酰胆碱受体的结构研究
- 批准号:
MR/Y012623/1 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Research Grant
CRCNS: Acetylcholine and state-dependent neural network reorganization
CRCNS:乙酰胆碱和状态依赖的神经网络重组
- 批准号:
10830050 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别:
Study on biological significance of acetylcholine and the content in food resources
乙酰胆碱的生物学意义及其在食物资源中的含量研究
- 批准号:
23K05090 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
alpha7 nicotinic acetylcholine receptor allosteric modulation and native structure
α7烟碱乙酰胆碱受体变构调节和天然结构
- 批准号:
10678472 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别:
Diurnal Variation in Acetylcholine Modulation of Dopamine Dynamics Following Chronic Cocaine Intake
慢性可卡因摄入后乙酰胆碱对多巴胺动力学调节的昼夜变化
- 批准号:
10679573 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别:
Striatal Regulation of Cortical Acetylcholine Release
纹状体对皮质乙酰胆碱释放的调节
- 批准号:
10549320 - 财政年份:2022
- 资助金额:
$ 7.18万 - 项目类别:
Differential Nicotinic Acetylcholine Receptor Modulation of Striatal Dopamine Release as a Mechanism Underlying Individual Differences in Drug Acquisition Rates
纹状体多巴胺释放的烟碱乙酰胆碱受体差异调节是药物获取率个体差异的机制
- 批准号:
10553611 - 财政年份:2022
- 资助金额:
$ 7.18万 - 项目类别:
Mechanisms of nicotinic acetylcholine receptor modulation of cocaine reward
烟碱乙酰胆碱受体调节可卡因奖赏的机制
- 批准号:
10672207 - 财政年份:2022
- 资助金额:
$ 7.18万 - 项目类别:
Structural basis of nicotinic acetylcholine receptor gating and toxin inhibition
烟碱乙酰胆碱受体门控和毒素抑制的结构基础
- 批准号:
10848770 - 财政年份:2022
- 资助金额:
$ 7.18万 - 项目类别:














{{item.name}}会员




