Manganese dioxide as a nanozyme to mitigate oxidative stress in osteoarthritis
二氧化锰作为纳米酶可减轻骨关节炎的氧化应激
基本信息
- 批准号:10751638
- 负责人:
- 金额:$ 4.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-16 至 2025-08-15
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAffectAntioxidantsArthralgiaBehaviorBinding SitesBiocompatible MaterialsBiological AvailabilityBiological FactorsCartilageCharacteristicsChargeChondrocytesChronicClassificationClinicContralateralDegenerative polyarthritisDevelopmentDiseaseDisease ProgressionDrug Delivery SystemsEngineeringEnzymesEtiologyEvaluationFeedbackGenerationsHistologicHomeostasisHydrogen PeroxideIn VitroInflammationInflammatoryInjuryInterruptionJointsKnee InjuriesLaboratory ResearchLearningLimb structureLocationManganeseMasksMeasuresMitochondriaModelingMotivationOrthopedicsOxidation-ReductionOxidative StressOxygenPainPathogenesisPathologyPeroxidasesPersonsPlayProductionPropertyPublic HealthReactive Oxygen SpeciesResearchRodentRodent ModelRoleSignal TransductionStructureSuperoxidesTactileTechniquesTestingTherapeuticTherapeutic AgentsTimeTrainingTranslatingTraumatic ArthropathyTreatment EfficacyUnited StatesWaterWorkaging populationantioxidant therapyarthropathiescartilage degradationcatalasechondroprotectionconventional therapycostdisabilityeffective therapygait examinationimprovedin vivoinflammatory markerinjuredinnovationinsightjoint destructionjoint functionjoint injurymetal oxidemitochondrial dysfunctionnanomaterialsnanoparticlenanoparticle deliverynovelpreservationpreventsensorsmall moleculetargeted treatmenttherapeutic targettraining opportunitytranslational approachtranslational medicinetranslational potentialuptake
项目摘要
PROJECT SUMMARY
In this proposal, we aim to characterize the multi-enzymatic and chondroprotective functions of a
bioactive biomaterial, manganese dioxide (MnO2) nanoparticles (NPs), as a therapeutic strategy to
mitigate oxidative stress in osteoarthritis (OA). The motivation for this work is the critical need to address
limitations for treating OA as a looming public health crisis, projected to affect 130 million people worldwide by
2050 due to an aging population.
Oxidative stress, the imbalance between reactive oxygen species (ROS) generation and antioxidant
function, is known to contribute to OA progression and may represent an important therapeutic target. There
have been numerous studies to evaluate the use of antioxidants and small molecules as therapeutic agents,
however these therapies are limited by poor bioavailability and stability within the joint. The objective of this
proposal is to utilize a metal-oxide biomaterial (MnO2) to overcome limitations of retention and bioavailability
and seeks to explore enzyme-mimicking functions to reduce the effects of oxidative stress. We have previously
shown that MnO2 can be engineered with cartilage-targeting properties, such as size and charge, that can
overcome limitations of traditional antioxidant therapies. Leveraging these properties we have seen improved
retention of MnO2 NPs in healthy and OA joints. Due to the barriers for targeting cartilage, this advancement is
critical in the development of a chondroprotective therapy. We hypothesize that MnO2 NPs possess enzyme
mimicking properties that will reduce oxidative stress in the joint thereby alleviating pain and disease
pathogenesis.
Characterization of enzyme mimicking functions is critical in the use of MnO2 NPs for biomedical
applications and may further classify the biomaterial as a ‘nanozyme.’ Our lab has already characterized the
hydrogen peroxide scavenging properties of MnO2 NPs and we anticipate ‘nanozyme’ classification will outline
catalase-like, superoxide-like, and peroxidase-like functions of MnO2. In Aim 1, we will examine how MnO2 NPs
influence compartment specific H2O2 production and the downstream effects of oxidative stress. Specifically,
we will characterize the antioxidant-like properties of MnO2 NPs and their impact on redox signaling,
chondroprotection, and inflammatory effects. In Aim 2 we will evaluate the therapeutic efficacy of MnO2 NPs in
vivo using a rodent model of post traumatic OA (PTOA) through comprehensive evaluation of NP retention in
the joint, joint remodeling, and behavior. Immediate treatment following joint trauma, which leads to PTOA, is a
critical opportunity for translation of a cartilage targeting therapy by leveraging cartilage that is still intact and
may be responsive to mitigating oxidative stress. The proposed work is significant and innovative by revealing
key mechanisms for mitigating oxidative stress and advancing the use of an enzyme-mimicking therapy that
may facilitate translation of strategies to slow the progression of joint disease.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica L Aldrich其他文献
Jessica L Aldrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 4.24万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 4.24万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 4.24万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 4.24万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 4.24万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 4.24万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 4.24万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 4.24万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 4.24万 - 项目类别:














{{item.name}}会员




