Predicting post-kidney transplant dementia/Alzheimer's Disease risk in older patients
预测老年患者肾移植后痴呆/阿尔茨海默氏病的风险
基本信息
- 批准号:10751734
- 负责人:
- 金额:$ 8.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-02 至 2026-08-01
- 项目状态:未结题
- 来源:
- 关键词:AgeAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease riskCalibrationCessation of lifeClassificationClinicalCognitiveCohort StudiesCommunitiesConsensusCox Proportional Hazards ModelsDataDementiaDevelopmentDiagnosisDialysis procedureDiscriminationDoctor of PhilosophyElderlyEnd stage renal failureEpidemiologic MethodsEthnic OriginEvaluationEventFacultyFundingGoalsHabilitationHybridsImpaired cognitionIncidenceInstructionInterventionKidney DiseasesKidney TransplantationLearningLongitudinal cohort studyMachine LearningMeasuresMedical HistoryMentorshipMethodsModelingOutcomeOutcomes ResearchPatientsPharmaceutical PreparationsRaceRecording of previous eventsResearchRiskRisk FactorsScientistSelf CareSubgroupSurgeonTechniquesTestingTimeTrainingTransplant RecipientsTransplantationUnited States National Institutes of HealthValidationVascular Dementiacognitive functioncohortcomorbiditydementia riskdepressive symptomsdesignexperiencefollow-upfrailtyfunctional disabilityhigh riskimprovedinterestmedication nonadherencemixed dementiamortality riskneurocognitive testnovelnutritionolder patientpost-transplantpost-transplant diseasepredictive modelingpredictive toolsprospectiverecruitrisk predictionscreeningsexskillstooltransplant centers
项目摘要
PROJECT SUMMARY/ABSTRACT
Kidney transplantation (KT) is increasing for older adults (≥50) with ESRD. In 2021, older adults received
roughly 60% of all KTs and are at increased risk of dementia/Alzheimer’s disease (AD). KT recipients who
develop dementia/AD post-transplant have a 2.4-fold increased risk of mortality and a 1.5-fold increased risk of
graft loss. Of older KT recipients who are diagnosed with dementia/AD, 88.6% die within 10 years. These
deaths may be due to inability to perform self-care, inadequate nutrition, or medication non-adherence.
Despite these risks, predicting who will develop post KT dementia/AD is not part of pre-KT evaluation.
Furthermore, factors routinely measured at pre-KT evaluation (age, sex, comorbidities, etc.) have only
moderate predictive power for post-KT dementia/AD. Predicting post-KT dementia/AD risk can help identify
older candidates who would benefit from interventions such as cognitive prehabilitation or post-KT surveillance.
Predicting post-KT dementia/AD risk at transplant evaluation provides enough time to intervene prior to KT.
To design a geriatric-specific model that can predict post-KT dementia/AD risk utilizing machine learning, we
will leverage an ongoing NIA-funded R01 prospective longitudinal cohort study of frailty among older KT
candidates to accomplish the following aims: (1) To identify dementia/AD cases and possible subtypes among
KT recipients and quantify the cumulative incidence of AD/dementia in KT recipients in this ongoing cohort
study; (2) To identify clinical, geriatric, and ESRD-specific risk factors that are associated with post-KT
dementia/AD; and (3) To design a model with the aid of machine learning that successfully predicts the risk of
post-KT dementia/AD in older patients undergoing KT evaluation. Our group’s expertise in frailty and
dementia/AD and access to the ongoing Frailty Assessment in Renal Disease (FAIR) cohort, along with Dr.
Long’s training interests in machine learning and regression, provide a unique opportunity to build prediction
models that could identify older candidates at highest risk of post-KT dementia/AD.
We hypothesize that a risk prediction tool that incorporates traditional clinical, geriatric, and ESRD-specific risk
factors that are commonly measured at KT evaluation, will improve post-KT dementia/AD risk prediction. If the
proposed aims are achieved, we will improve our ability to identify older patients at increased risk of developing
post-KT dementia/AD, who will need additional interventions to improve post-KT outcomes.
项目摘要/摘要
ESRD的老年人(≥50)的肾脏移植(KT)正在增加。 2021年,老年人收到
所有KTS的大约60%,痴呆症/阿尔茨海默氏病(AD)的风险增加。 KT接收者
发展痴呆症/AD移植术的死亡率风险增加了2.4倍,增加了1.5倍
移植损失。在被诊断患有痴呆症/AD的年长KT接受者中,有88.6%的人在10年内死亡。这些
死亡可能是由于无法进行自我保健,营养不足或不遵守药物而导致的。
尽管有这些风险,但预测谁将在KT痴呆症之后/AD后发展成为KT前评估的一部分。
此外,在KT评估(年龄,性别,合并症等)中常规衡量的因素仅具有
KT后痴呆/AD的中等预测能力。预测KT后痴呆症/AD风险可以帮助识别
年长的候选人将受益于诸如认知预居住或KT后监视之类的干预措施。
在移植评估中预测KT后痴呆症/AD风险提供了足够的时间进行KT进行干预。
设计一个可以预测KT痴呆症/广告风险利用机器学习的老年特异性模型,我们
将利用正在进行的NIA资助的R01前瞻性纵向队列研究中的脆弱性研究
候选人实现以下目的:(1)识别痴呆症/广告病例和可能的亚型
KT接收者并量化KT接受者AD/痴呆的累积事件
学习; (2)确定与KT后相关的临床,老年和ESRD特异性风险因素
痴呆/广告; (3)借助机器学习设计模型,该模型成功地预测了
接受KT评估的老年患者的KT痴呆症/AD。我们小组在脆弱和
痴呆症/AD,并获得肾脏疾病(公平)持续的脆弱评估(博士)
Long在机器学习和回归方面的培训兴趣,提供了建立预测的独特机会
可以识别具有KT后痴呆症/AD风险最高的老年候选人的模型。
我们假设一种风险预测工具,它结合了传统的临床,老年和ESRD特定风险
通常在KT评估中测量的因素将改善KT后痴呆症/AD风险预测。如果是
实现了拟议的目标,我们将提高识别年长患者的能力
KT后痴呆症/AD,他将需要其他干预措施来改善KT后成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jane J Long其他文献
Jane J Long的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 8.78万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 8.78万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 8.78万 - 项目类别: