Predicting post-kidney transplant dementia/Alzheimer's Disease risk in older patients

预测老年患者肾移植后痴呆/阿尔茨海默氏病的风险

基本信息

  • 批准号:
    10751734
  • 负责人:
  • 金额:
    $ 8.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-02 至 2026-08-01
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Kidney transplantation (KT) is increasing for older adults (≥50) with ESRD. In 2021, older adults received roughly 60% of all KTs and are at increased risk of dementia/Alzheimer’s disease (AD). KT recipients who develop dementia/AD post-transplant have a 2.4-fold increased risk of mortality and a 1.5-fold increased risk of graft loss. Of older KT recipients who are diagnosed with dementia/AD, 88.6% die within 10 years. These deaths may be due to inability to perform self-care, inadequate nutrition, or medication non-adherence. Despite these risks, predicting who will develop post KT dementia/AD is not part of pre-KT evaluation. Furthermore, factors routinely measured at pre-KT evaluation (age, sex, comorbidities, etc.) have only moderate predictive power for post-KT dementia/AD. Predicting post-KT dementia/AD risk can help identify older candidates who would benefit from interventions such as cognitive prehabilitation or post-KT surveillance. Predicting post-KT dementia/AD risk at transplant evaluation provides enough time to intervene prior to KT. To design a geriatric-specific model that can predict post-KT dementia/AD risk utilizing machine learning, we will leverage an ongoing NIA-funded R01 prospective longitudinal cohort study of frailty among older KT candidates to accomplish the following aims: (1) To identify dementia/AD cases and possible subtypes among KT recipients and quantify the cumulative incidence of AD/dementia in KT recipients in this ongoing cohort study; (2) To identify clinical, geriatric, and ESRD-specific risk factors that are associated with post-KT dementia/AD; and (3) To design a model with the aid of machine learning that successfully predicts the risk of post-KT dementia/AD in older patients undergoing KT evaluation. Our group’s expertise in frailty and dementia/AD and access to the ongoing Frailty Assessment in Renal Disease (FAIR) cohort, along with Dr. Long’s training interests in machine learning and regression, provide a unique opportunity to build prediction models that could identify older candidates at highest risk of post-KT dementia/AD. We hypothesize that a risk prediction tool that incorporates traditional clinical, geriatric, and ESRD-specific risk factors that are commonly measured at KT evaluation, will improve post-KT dementia/AD risk prediction. If the proposed aims are achieved, we will improve our ability to identify older patients at increased risk of developing post-KT dementia/AD, who will need additional interventions to improve post-KT outcomes.
项目摘要/摘要 ESRD的老年人(≥50)的肾脏移植(KT)正在增加。 2021年,老年人收到 所有KTS的大约60%,痴呆症/阿尔茨海默氏病(AD)的风险增加。 KT接收者 发展痴呆症/AD移植术的死亡率风险增加了2.4倍,增加了1.5倍 移植损失。在被诊断患有痴呆症/AD的年长KT接受者中,有88.6%的人在10年内死亡。这些 死亡可能是由于无法进行自我保健,营养不足或不遵守药物而导致的。 尽管有这些风险,但预测谁将在KT痴呆症之后/AD后发展成为KT前评估的一部分。 此外,在KT评估(年龄,性别,合并症等)中常规衡量的因素仅具有 KT后痴呆/AD的中等预测能力。预测KT后痴呆症/AD风险可以帮助识别 年长的候选人将受益于诸如认知预居住或KT后监视之类的干预措施。 在移植评估中预测KT后痴呆症/AD风险提供了足够的时间进行KT进行干预。 设计一个可以预测KT痴呆症/广告风险利用机器学习的老年特异性模型,我们 将利用正在进行的NIA资助的R01前瞻性纵向队列研究中的脆弱性研究 候选人实现以下目的:(1)识别痴呆症/广告病例和可能的亚型 KT接收者并量化KT接受者AD/痴呆的累积事件 学习; (2)确定与KT后相关的临床,老年和ESRD特异性风险因素 痴呆/广告; (3)借助机器学习设计模型,该模型成功地预测了 接受KT评估的老年患者的KT痴呆症/AD。我们小组在脆弱和 痴呆症/AD,并获得肾脏疾病(公平)持续的脆弱评估(博士) Long在机器学习和回归方面的培训兴趣,提供了建立预测的独特机会 可以识别具有KT后痴呆症/AD风险最高的老年候选人的模型。 我们假设一种风险预测工具,它结合了传统的临床,老年和ESRD特定风险 通常在KT评估中测量的因素将改善KT后痴呆症/AD风险预测。如果是 实现了拟议的目标,我们将提高识别年长患者的能力 KT后痴呆症/AD,他将需要其他干预措施来改善KT后成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jane J Long其他文献

Jane J Long的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
  • 批准号:
    10748606
  • 财政年份:
    2024
  • 资助金额:
    $ 8.78万
  • 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 8.78万
  • 项目类别:
Individual Predoctoral Fellowship
个人博士前奖学金
  • 批准号:
    10752036
  • 财政年份:
    2024
  • 资助金额:
    $ 8.78万
  • 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 8.78万
  • 项目类别:
Core D: Integrated Computational Analysis Core
核心D:综合计算分析核心
  • 批准号:
    10555896
  • 财政年份:
    2023
  • 资助金额:
    $ 8.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了