Predicting post-kidney transplant dementia/Alzheimer's Disease risk in older patients
预测老年患者肾移植后痴呆/阿尔茨海默氏病的风险
基本信息
- 批准号:10751734
- 负责人:
- 金额:$ 8.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-02 至 2026-08-01
- 项目状态:未结题
- 来源:
- 关键词:AgeAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease riskCalibrationCessation of lifeClassificationClinicalCognitiveCohort StudiesCommunitiesConsensusCox Proportional Hazards ModelsDataDementiaDevelopmentDiagnosisDialysis procedureDiscriminationDoctor of PhilosophyElderlyEnd stage renal failureEpidemiologic MethodsEthnic OriginEvaluationEventFacultyFundingGoalsHabilitationHybridsImpaired cognitionIncidenceInstructionInterventionKidney DiseasesKidney TransplantationLearningLongitudinal cohort studyMachine LearningMeasuresMedical HistoryMentorshipMethodsModelingOutcomeOutcomes ResearchPatientsPharmaceutical PreparationsRaceRecording of previous eventsResearchRiskRisk FactorsScientistSelf CareSubgroupSurgeonTechniquesTestingTimeTrainingTransplant RecipientsTransplantationUnited States National Institutes of HealthValidationVascular Dementiacognitive functioncohortcomorbiditydementia riskdepressive symptomsdesignexperiencefollow-upfrailtyfunctional disabilityhigh riskimprovedinterestmedication nonadherencemixed dementiamortality riskneurocognitive testnovelnutritionolder patientpost-transplantpost-transplant diseasepredictive modelingpredictive toolsprospectiverecruitrisk predictionscreeningsexskillstooltransplant centers
项目摘要
PROJECT SUMMARY/ABSTRACT
Kidney transplantation (KT) is increasing for older adults (≥50) with ESRD. In 2021, older adults received
roughly 60% of all KTs and are at increased risk of dementia/Alzheimer’s disease (AD). KT recipients who
develop dementia/AD post-transplant have a 2.4-fold increased risk of mortality and a 1.5-fold increased risk of
graft loss. Of older KT recipients who are diagnosed with dementia/AD, 88.6% die within 10 years. These
deaths may be due to inability to perform self-care, inadequate nutrition, or medication non-adherence.
Despite these risks, predicting who will develop post KT dementia/AD is not part of pre-KT evaluation.
Furthermore, factors routinely measured at pre-KT evaluation (age, sex, comorbidities, etc.) have only
moderate predictive power for post-KT dementia/AD. Predicting post-KT dementia/AD risk can help identify
older candidates who would benefit from interventions such as cognitive prehabilitation or post-KT surveillance.
Predicting post-KT dementia/AD risk at transplant evaluation provides enough time to intervene prior to KT.
To design a geriatric-specific model that can predict post-KT dementia/AD risk utilizing machine learning, we
will leverage an ongoing NIA-funded R01 prospective longitudinal cohort study of frailty among older KT
candidates to accomplish the following aims: (1) To identify dementia/AD cases and possible subtypes among
KT recipients and quantify the cumulative incidence of AD/dementia in KT recipients in this ongoing cohort
study; (2) To identify clinical, geriatric, and ESRD-specific risk factors that are associated with post-KT
dementia/AD; and (3) To design a model with the aid of machine learning that successfully predicts the risk of
post-KT dementia/AD in older patients undergoing KT evaluation. Our group’s expertise in frailty and
dementia/AD and access to the ongoing Frailty Assessment in Renal Disease (FAIR) cohort, along with Dr.
Long’s training interests in machine learning and regression, provide a unique opportunity to build prediction
models that could identify older candidates at highest risk of post-KT dementia/AD.
We hypothesize that a risk prediction tool that incorporates traditional clinical, geriatric, and ESRD-specific risk
factors that are commonly measured at KT evaluation, will improve post-KT dementia/AD risk prediction. If the
proposed aims are achieved, we will improve our ability to identify older patients at increased risk of developing
post-KT dementia/AD, who will need additional interventions to improve post-KT outcomes.
项目概要/摘要
对于患有 ESRD 的老年人(≥50 岁)来说,肾移植(KT)正在增加。 2021 年,老年人获得
大约 60% 的 KT 患有痴呆/阿尔茨海默病 (AD) 的风险增加。 KT 接收者
移植后发生痴呆/AD 的死亡风险增加 2.4 倍,罹患痴呆症的风险增加 1.5 倍
移植物损失。在被诊断患有痴呆症/AD 的老年 KT 接受者中,88.6% 会在 10 年内死亡。这些
死亡可能是由于无法自我护理、营养不足或不遵守药物治疗造成的。
尽管存在这些风险,预测谁会患上 KT 后痴呆/AD 并不是 KT 前评估的一部分。
此外,KT 前评估中常规测量的因素(年龄、性别、合并症等)仅影响
对 KT 后痴呆/AD 的中等预测能力。预测 KT 后痴呆/AD 风险有助于识别
老年候选人将受益于认知预康复或 KT 后监测等干预措施。
在移植评估中预测 KT 后痴呆/AD 风险为 KT 之前的干预提供了足够的时间。
为了设计一个可以利用机器学习预测 KT 后痴呆/AD 风险的老年人特异性模型,我们
将利用正在进行的 NIA 资助的 R01 前瞻性纵向队列研究,研究老年 KT 的虚弱状况
候选人实现以下目标:(1)识别痴呆/AD病例和可能的亚型
KT 接受者并量化该持续队列中 KT 接受者 AD/痴呆的累积发病率
学习; (2) 确定与 KT 后相关的临床、老年和 ESRD 特异性危险因素
痴呆症/AD; (3) 借助机器学习设计一个模型,成功预测风险
接受 KT 评估的老年患者出现 KT 后痴呆/AD。我们团队在衰弱和治疗方面的专业知识
痴呆症/AD 以及参与正在进行的肾病虚弱评估 (FAIR) 队列,以及 Dr.
Long 对机器学习和回归的培训兴趣为构建预测提供了独特的机会
可以识别 KT 后痴呆/AD 风险最高的老年候选人的模型。
我们假设风险预测工具结合了传统的临床、老年和 ESRD 特定风险
KT 评估中通常测量的因素将改善 KT 后痴呆/AD 风险预测。如果
如果实现了拟议的目标,我们将提高识别老年患者患病风险增加的能力
KT 后痴呆/AD,需要额外的干预措施来改善 KT 后的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jane J Long其他文献
Jane J Long的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}














{{item.name}}会员




