Acoustic Modeling of skull bone for improved transcranial MR-guided focused ultrasound therapy
颅骨声学建模用于改进经颅 MR 引导聚焦超声治疗
基本信息
- 批准号:10752399
- 负责人:
- 金额:$ 4.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-20 至 2025-07-19
- 项目状态:未结题
- 来源:
- 关键词:AblationAcousticsAffectAlgorithmsBathingBlood - brain barrier anatomyCell NucleusCephalicCharacteristicsClinicalClinical DataClinical TreatmentCompensationComplexComputed Tomography ScannersDataDependenceDevicesDiseaseDrug Delivery SystemsEligibility DeterminationEquationEssential TremorFDA approvedFocused UltrasoundFocused Ultrasound TherapyFoundationsFutureGoalsHeatingHigh Resolution Computed TomographyHumanHybridsIndividualMagnetic ResonanceMagnetic Resonance ImagingMapsMeasurementMeasuresMechanicsMentorsMethodsModalityModelingMonitorMorbidity - disease rateNeurologyPatientsPhasePositioning AttributeProceduresPropertyResearchResearch TrainingSafetySamplingScanningSpeedStimulusSystemTemperatureThalamic structureTherapeuticThermal Ablation TherapyThermometryTissuesWaterWorkX-Ray Computed Tomographyattenuationbonecostcraniumexperienceexperimental studyimprovedindividualized medicinemortalitynervous system disorderneuroregulationnovelpressuresimulationsoundtransmission processtreatment durationultrasound
项目摘要
Project Summary/Abstract (Limit 30 lines)
This proposal aims to improve the patient-specific Computed Tomography (CT)-derived modeling of
transcranial focused ultrasound by comparing acoustic and thermal simulations to hydrophone scans of
excised skull flaps and clinical magnetic resonance thermometry (MRTI) from Essential Tremor (ET)
thalamotomy treatments. Magnetic resonance-guided transcranial focused ultrasound (tMRgFUS) is a non-
invasive therapeutic modality used to treat a wide variety of neurological disorders. tMRgFUS relies on tightly
focusing the ultrasound beam through the inhomogeneous human skull. A fundamental challenge is accurately
determining the acoustic properties of the skull to phase-compensate for the inhomogeneities. Furthermore,
acoustic parameters such as speed of sound c and attenuation α may change with increased temperature,
causing further defocusing. Inaccurate acoustic parameters can result in off-target heating, longer treatment
times, and failed treatments.
This project will improve the focusing of ultrasound through the human skull by accurately determining
individual skull acoustic parameters. The Hybrid Angular Spectrum (HAS) beam simulation method and the
Pennes bioheat equation can simulate pressure fields and thermal rises by mapping acoustic and thermal
parameters to CT Hounsfield Units. The results of these simulations may be compared to experimental data to
determine the accuracy of tFUS acoustic and thermal modeling. Applying this method in reverse, a surrogate
optimization algorithm, which excels at black-box expensive optimization problems, will be used to iteratively
adjust simulation parameters to fit experimental data using a cost function. Aim I will determine the relationship
of the acoustic properties of bone to CT Hounsfield Units. An optimization algorithm will iteratively adjust the
acoustic parameter mapping such that a cost function comparing simulated and measured transmitted acoustic
pressures is minimized. The resulting optimal acoustic parameters accurately model transcranial acoustic
transmission. Aim II will determine the cause of reduced treatment efficiency with high acoustic powers during
tMRgFUS. An optimization algorithm will iteratively adjust the acoustic and thermal parameters to minimize a
cost function comparing simulation to MRTI data from clinical ET Thalamotomy patients.
This work will improve acoustic modeling through the human skull, which is the first step in improving
transcranial focused ultrasound therapy. According to the Focused Ultrasound Foundation, tMRgFUS could be
applied to at least 34 neurological disorders. Thus, this work could have a magnified effect, significantly
reducing morbidity and mortality across the field of neurology.
项目概要/摘要(限30行)
该提案旨在改善患者特异性计算机断层扫描(CT)衍生的建模,
通过比较声学和热模拟与水听器扫描,
原发性震颤(ET)的切除颅骨瓣和临床磁共振测温(MRTI)
丘脑切开术治疗磁共振引导经颅聚焦超声(tMRgFUS)是一种非
用于治疗多种神经系统疾病侵入性治疗方式。tMRgFUS紧密依赖于
聚焦超声波束穿过不均匀的人类头骨。一个根本的挑战是准确地
确定颅骨的声学特性以相位补偿不均匀性。此外,委员会认为,
诸如声速C和衰减α的声学参数可以随着温度的升高而改变,
导致进一步散焦。不准确的声学参数可能导致偏离目标的加热,治疗时间延长
治疗失败的次数。
该项目将通过准确确定人类头骨的超声聚焦,
个体颅骨声学参数。本文介绍了混合角谱(HAS)光束模拟方法,
Pennes生物热方程可以通过映射声学和热学来模拟压力场和温升
CT Hounsfield单位这些模拟的结果可以与实验数据进行比较,
确定tFUS声学和热建模的准确性。反过来应用此方法,
优化算法,它擅长于黑箱昂贵的优化问题,将被用来迭代
使用成本函数调整模拟参数以拟合实验数据。目的我将决定关系
骨的声学特性与CT亨氏单位的关系。优化算法将迭代地调整
声学参数映射,使得比较模拟的和测量的传输声学参数的成本函数
压力被最小化。由此产生的最佳声学参数准确地模拟经颅声学
传输目的II将确定在高声功率下治疗效率降低的原因,
tMRgFUS。优化算法将迭代地调整声学和热参数以最小化
比较模拟与临床ET丘脑切开术患者的MRI数据的成本函数。
这项工作将通过人类头骨改进声学建模,这是改进的第一步。
经颅聚焦超声治疗根据聚焦超声基金会,tMRgFUS可以
适用于至少34种神经系统疾病。因此,这项工作可能会产生放大效应,
降低神经病学领域的发病率和死亡率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sam Clinard其他文献
Sam Clinard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 4.21万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 4.21万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 4.21万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 4.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 4.21万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 4.21万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 4.21万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 4.21万 - 项目类别:
Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 4.21万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 4.21万 - 项目类别:
Discovery Launch Supplement