Acoustic Modeling of skull bone for improved transcranial MR-guided focused ultrasound therapy

颅骨声学建模用于改进经颅 MR 引导聚焦超声治疗

基本信息

  • 批准号:
    10752399
  • 负责人:
  • 金额:
    $ 4.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-20 至 2025-07-19
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract (Limit 30 lines) This proposal aims to improve the patient-specific Computed Tomography (CT)-derived modeling of transcranial focused ultrasound by comparing acoustic and thermal simulations to hydrophone scans of excised skull flaps and clinical magnetic resonance thermometry (MRTI) from Essential Tremor (ET) thalamotomy treatments. Magnetic resonance-guided transcranial focused ultrasound (tMRgFUS) is a non- invasive therapeutic modality used to treat a wide variety of neurological disorders. tMRgFUS relies on tightly focusing the ultrasound beam through the inhomogeneous human skull. A fundamental challenge is accurately determining the acoustic properties of the skull to phase-compensate for the inhomogeneities. Furthermore, acoustic parameters such as speed of sound c and attenuation α may change with increased temperature, causing further defocusing. Inaccurate acoustic parameters can result in off-target heating, longer treatment times, and failed treatments. This project will improve the focusing of ultrasound through the human skull by accurately determining individual skull acoustic parameters. The Hybrid Angular Spectrum (HAS) beam simulation method and the Pennes bioheat equation can simulate pressure fields and thermal rises by mapping acoustic and thermal parameters to CT Hounsfield Units. The results of these simulations may be compared to experimental data to determine the accuracy of tFUS acoustic and thermal modeling. Applying this method in reverse, a surrogate optimization algorithm, which excels at black-box expensive optimization problems, will be used to iteratively adjust simulation parameters to fit experimental data using a cost function. Aim I will determine the relationship of the acoustic properties of bone to CT Hounsfield Units. An optimization algorithm will iteratively adjust the acoustic parameter mapping such that a cost function comparing simulated and measured transmitted acoustic pressures is minimized. The resulting optimal acoustic parameters accurately model transcranial acoustic transmission. Aim II will determine the cause of reduced treatment efficiency with high acoustic powers during tMRgFUS. An optimization algorithm will iteratively adjust the acoustic and thermal parameters to minimize a cost function comparing simulation to MRTI data from clinical ET Thalamotomy patients. This work will improve acoustic modeling through the human skull, which is the first step in improving transcranial focused ultrasound therapy. According to the Focused Ultrasound Foundation, tMRgFUS could be applied to at least 34 neurological disorders. Thus, this work could have a magnified effect, significantly reducing morbidity and mortality across the field of neurology.
项目摘要/摘要(限30行)

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sam Clinard其他文献

Sam Clinard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 4.21万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 4.21万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 4.21万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 4.21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 4.21万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 4.21万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 4.21万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 4.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 4.21万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 4.21万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了