Advancing Epilepsy Diagnosis with Flexible, High-Resolution Thin-Film Electrodes
利用灵活的高分辨率薄膜电极推进癫痫诊断
基本信息
- 批准号:10753771
- 负责人:
- 金额:$ 14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Administrative SupplementAdvanced DevelopmentAmericanAnimal ModelAreaBiologyClinical TrialsCollaborationsDataDevelopmentDevice DesignsDevicesDiagnosisDiagnosticEffectivenessElectrodesEngineeringEpilepsyFDA approvedFaceFailureFilmFreedomFundingFutureGrantImplantIndividualIndustrializationIntractable EpilepsyLocationModernizationNeocortexNeurologicNeurosurgical ProceduresNew YorkOperative Surgical ProceduresPainParentsPartial EpilepsiesPhasePlayPreclinical TestingRandomizedResolutionRiskRoleSamplingScientistSeizuresSiteSourceSwellingSystemTechnologyTestingThinnessTissuesTranslatingUnited States National Institutes of HealthUniversitiesUtahWorkcostdata acquisitiondiagnostic valueflexibilityimplantationimprovedlarge scale dataliquid crystal polymermedical schoolsmicrosystemsneocorticalnervous system disorderneuralneuroinflammationnext generationnonhuman primatenovelpatient tolerabilitypersonalized approachpersonalized medicineprototyperesearch clinical testing
项目摘要
Project Summary
To advance the development of next-generation personalized therapies for long-term seizure freedom, we
urgently need technologies that improve seizure diagnostics while reducing risks associated with invasive
neurosurgical procedures. Among the more than 1,000,000 Americans with uncontrolled focal epilepsy, many
have poorly localized seizure foci. These individuals face the highest rates of ‘failure’ (i.e., ongoing seizures)
after epilepsy surgery. That failure reflects the biology of their epilepsy as well as the overlap of seizure foci with
essential cortical areas. However, limits of current technologies also play a critical role in the high failure rate as
we are currently limited in our ability to sample wide regions of the neocortex (i.e., stereoEEG) or to record broad
neocortical regions without inducing pain, swelling, and neuroinflammatory tissue damage (i.e., subdural grid
and strip recordings).
To meet this need for safer, more effective invasive electrode studies and simultaneously enable discovery to
advance next-generation therapies, this UG3/UH3 clinical trial project leverages a successful, long-term
collaboration between clinicians, engineers, material scientists, neuroscientists and industrial partners at New
York University School of Medicine, New York University, Duke University, the University of Utah, Blackrock
Microsystems, and Dyconex to translate modern thin-film technology into next generation FDA-approved
implantable neurological devices. We have developed and extensively tested a novel electrode array based on
liquid crystal polymer thin-film (LCP-TF) technology with partner Dyconex, AG. When combined with large-scale
data acquisition systems, LCP-TF electrodes will provide higher quality neural recordings than existing FDA
approved electrode arrays, with improved safely and at an affordable cost.
We propose to obtain traditional 510(k) approval from the FDA for short-term implantation (<30 days) of LCP-TF
electrodes to (1) improve surgical tolerability for patients with neocortical, focal, drug-resistant epilepsy
undergoing invasive electrode studies and (2) advance diagnostic capabilities to determine the location of
seizure foci. Our preliminary work in a non-human primate animal model led to a prototype device nearly identical
to the final device design planned for clinical testing. This work establishes supporting data for entry into
preclinical testing in the 3-year UG3 phase (Aims 1-3) that will lead to 510(k)-approved devices (Aim 4) for a
single-site, randomized-controlled pilot clinical trial in the 2-year UH3 phase (Aim 5) that will test the hypothesis
that performing epilepsy diagnostic studies with LCP-TF electrodes, compared to CG electrodes, improves both
surgical tolerability and diagnostic effectiveness. These efforts will advance the development of next-generation
precision approaches to treating epilepsy as well as support future development of LCP-TF electrodes for other
neurological disorders. Low-cost, FDA-approved LCP-TF electrodes have the potential to revolutionize the
treatment of a wide range of neurological disorders
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Kyle Franklin其他文献
Robert Kyle Franklin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Kyle Franklin', 18)}}的其他基金
Advancing epilepsy diagnosis with flexible, high-resolution thin-film electrodes
利用灵活的高分辨率薄膜电极推进癫痫诊断
- 批准号:
10297290 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Multi-channel MR-compatible flexible microelectrode for recording and stimulation
用于记录和刺激的多通道 MR 兼容柔性微电极
- 批准号:
9139158 - 财政年份:2016
- 资助金额:
$ 14万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:














{{item.name}}会员




