Signaling Pathways and Microtubule Function

信号通路和微管功能

基本信息

  • 批准号:
    7937170
  • 负责人:
  • 金额:
    $ 3.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The long-term goal of this project is to understand the signaling pathways that regulate microtubules and microtubule-dependent processes. The general hypothesis guiding this project is that cortical events activate signaling pathways that affect microtubule stability. This hypothesis stems from studies performed in the PI's laboratory on the effect of osmotic support on microtubules and their associated proteins, and fits well with the PI's long-term goals to better understand how the microtubule cytoskeleton is regulated. The main finding of the preliminary studies is that mutations in CinSp, a yeast microtubule-associated motor protein that functions in mitosis, compromise cell wall integrity and that osmotic support stabilizes microtubules and suppresses the temperature sensitivity phenotype associated with these mutations. An additional basis for the hypothesis is the identification of two multicopy suppressors, GIC1 and KRE6, which suppress the cin8 mutations and are associated with MAP kinase pathways that regulate osmotic conditions and cell integrity. How osmotic conditions affect microtubule stability through interaction with signaling pathways is not known and is the focus of this new project. The clear suppression of the cin8 mutations by osmotic support provides an efficient tool for identification of components of the pathways that are induced by osmotic conditions. The specific aims in this proposal will test the hypothesis by studying the effect of osmotic stabilizers on the microtubule cytoskeleton and elucidating the signaling pathways that affect microtubule stabilization. Three experimental approaches will be used to test the hypothesis. In Aim 1, microbial, biochemical, molecular and cell biology techniques will be employed to assay the effect of osmolytes on microtubule dynamics and function. In Aim 2, mutational analysis will identify genes that participate in osmotically-induced signaling pathways that stabilize microtubules. In Aim 3, epistasis analysis of these genes will be used to construct models for the cascade of events that affect microtubule stability. Results obtained under this project will enhance our current knowledge on how cells regulate their microtubules and will significantly impact the fields of cytoskeleton and signal transduction. Because some cancer therapeutic drugs are based on controlling microtubule stability, new information on such mechanisms could be applied to the search of new drugs that target components of pathways that regulate microtubule stability in cancerous cells.
描述(由申请人提供):本项目的长期目标是了解调节微管和微管依赖性过程的信号通路。指导这个项目的一般假设是,皮质事件激活影响微管稳定性的信号通路。这一假设源于PI实验室对渗透支持对微管及其相关蛋白的影响进行的研究,并且与PI的长期目标非常吻合,以更好地了解微管细胞骨架是如何调节的。初步研究的主要发现是,CinSp(一种在有丝分裂中起作用的酵母微管相关马达蛋白)的突变损害了细胞壁的完整性,渗透支持稳定了微管并抑制了与这些突变相关的温度敏感性表型。该假设的另一个基础是鉴定了两个多拷贝抑制因子GIC 1和KRE 6,它们抑制cin8突变,并与调节渗透条件和细胞完整性的MAP激酶途径相关。渗透条件如何通过与信号通路的相互作用影响微管稳定性尚不清楚,这是这个新项目的重点。通过渗透支持对cin8突变的明确抑制为鉴定由渗透条件诱导的途径的组分提供了有效的工具。本提案中的具体目标将通过研究渗透稳定剂对微管细胞骨架的影响并阐明影响微管稳定的信号通路来验证这一假设。三个实验方法将被用来测试的假设。目的1:利用微生物、生物化学、分子生物学和细胞生物学技术研究渗透剂对微管动力学和功能的影响。在目标2中,突变分析将确定参与稳定微管的诱导信号通路的基因。在目标3中,这些基因的上位性分析将用于构建影响微管稳定性的级联事件的模型。本项目的研究成果将丰富我们对细胞如何调控微管的认识,并将对细胞骨架和信号转导领域产生重大影响。因为一些癌症治疗药物是基于控制微管稳定性,关于这种机制的新信息可以应用于寻找靶向调节癌细胞中微管稳定性的途径组分的新药。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cell cycle regulators interact with pathways that modulate microtubule stability in Saccharomyces cerevisiae.
细胞周期调节剂与调节酿酒酵母微管稳定性的途径相互作用。
  • DOI:
    10.1128/ec.05215-11
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shohat-Tal,Aya;Eshel,Dan
  • 通讯作者:
    Eshel,Dan
Mutations in the yeast kinesin-like Cin8p are alleviated by osmotic support.
渗透压支持减轻了酵母驱动蛋白样 Cin8p 的突变。
  • DOI:
    10.1016/j.femsle.2005.02.009
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Korolyev,Eduard;Steinberg-Neifach,Olga;Eshel,Dan
  • 通讯作者:
    Eshel,Dan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DAN ESHEL其他文献

DAN ESHEL的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DAN ESHEL', 18)}}的其他基金

Signaling Pathways and Microtubule Function
信号通路和微管功能
  • 批准号:
    6504761
  • 财政年份:
    2002
  • 资助金额:
    $ 3.96万
  • 项目类别:
Signaling Pathways and Microtubule Function
信号通路和微管功能
  • 批准号:
    7071482
  • 财政年份:
    2002
  • 资助金额:
    $ 3.96万
  • 项目类别:

相似海外基金

CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 3.96万
  • 项目类别:
    Continuing Grant
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
  • 批准号:
    2320160
  • 财政年份:
    2023
  • 资助金额:
    $ 3.96万
  • 项目类别:
    Standard Grant
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
  • 批准号:
    23H02481
  • 财政年份:
    2023
  • 资助金额:
    $ 3.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
  • 批准号:
    479334
  • 财政年份:
    2023
  • 资助金额:
    $ 3.96万
  • 项目类别:
    Operating Grants
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
  • 批准号:
    10655891
  • 财政年份:
    2023
  • 资助金额:
    $ 3.96万
  • 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
  • 批准号:
    10716621
  • 财政年份:
    2023
  • 资助金额:
    $ 3.96万
  • 项目类别:
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
  • 批准号:
    10637251
  • 财政年份:
    2023
  • 资助金额:
    $ 3.96万
  • 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
  • 批准号:
    10604822
  • 财政年份:
    2023
  • 资助金额:
    $ 3.96万
  • 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
  • 批准号:
    10621634
  • 财政年份:
    2023
  • 资助金额:
    $ 3.96万
  • 项目类别:
Examination of risk assessment and biochemical assessment of fracture development focusing on the body composition of patients with rheumatoid arthritis
关注类风湿性关节炎患者身体成分的骨折发生风险评估和生化评估检查
  • 批准号:
    22KJ2600
  • 财政年份:
    2023
  • 资助金额:
    $ 3.96万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了