Etiology of Chromosome Translocations
染色体易位的病因学
基本信息
- 批准号:7877976
- 负责人:
- 金额:$ 23.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:BiochemicalBiochemistryBiological AssayBiological ModelsBlood typing procedureCell Cycle CheckpointCellsCellular biologyChildhoodChromosomal BreaksChromosomal translocationChromosome abnormalityChromosomesComplexDNADNA DamageDNA Double Strand BreakDNA lesionDefectDetectionDiagnosisDiseaseDouble Strand Break RepairEtiologyFluorescence MicroscopyFrequenciesGene MutationGenesGeneticGenetic ScreeningGenomeGoalsHematopoietic NeoplasmsHereditary DiseaseHumanKineticsLightMalignant Childhood NeoplasmMalignant lymphoid neoplasmMediatingModelingMolecularMonitorNonhomologous DNA End JoiningOncogenicPathway interactionsPatientsPhosphorylationPopulationPreventiveProcessProteinsReactionReciprocal TranslocationResearchRoleSaccharomyces cerevisiaeSequence AnalysisSignal TransductionSiteSystemTechniquesTherapeuticTimeTreatment ProtocolsYeastsbasecancer typecarcinogenesiscohesingenetic analysisin vivoinsightmutantnoveloutcome forecastpreventprogramspublic health relevancerepairedresponsesarcomatime use
项目摘要
DESCRIPTION (provided by applicant): Chromosome translocations are frequently associated with many types of blood cancers and childhood sarcomas. Clinically, chromosome translocations are important because they offer the ability to precisely diagnose the type of cancers and to tailor treatment. Paradoxically, the molecular mechanism that leads to chromosome translocations is not well understood. The available evidence suggests the role of process repairing DNA double strand breaks in the formation of chromosome translocations. Recently, we developed a novel yeast-based model system to detect non-homologous end joining (NHEJ)- dependent, reciprocal chromosome translocations in vivo. This system allowed us to detect in real time a reciprocal translocation of site-specific DNA double strand breaks from a population of cells. A screen using our system resulted in the identification of several gene mutations that elevate the frequency of NHEJ- dependent chromosome translocations. Through this system, we uncovered a role of a specific DNA damage surveillance pathway in suppression of chromosome translocations. The focus of this proposal is to identify and characterize the genetic network that suppresses chromosome translocation. An approach combining genetics, cell biology and biochemistry will be used to provide mechanistic insights into genetic and mechanistic underpinnings of NHEJ-mediated chromosome translocations. These studies will shed light on the molecular mechanism leading to chromosome translocations in humans and may provide conceptual basis for advanced therapeutics to treat or prevent blood cancers. PUBLIC HEALTH RELEVANCE: The long-term objective of our research program is to dissect the molecular mechanism that causes oncogenic chromosome translocations. Mutations of genes identified by our study are known to enforce one of the DNA damage surveillance pathways, which can suppress chromosome translocations, and predispose patients to chromosomal translocations and lymphoid malignancy. This application will identify and characterize damage- surveillance and other mechanisms that suppress chromosome translocation to understand the defects in blood cancers and develop novel preventive and/or therapeutic strategies.
描述(由申请人提供):染色体易位经常与许多类型的血液癌和儿童肉瘤有关。在临床上,染色体易位很重要,因为它们具有精确诊断癌症类型和量身定制治疗的能力。矛盾的是,导致染色体易位的分子机制尚不清楚。现有证据表明,修复DNA双链断裂的过程在染色体易位形成中的作用。最近,我们开发了一种基于酵母菌的新型模型系统,以检测非同源末端连接(NHEJ) - 依赖性的,相互的染色体易位。该系统允许我们实时检测到位点特异性DNA双链从一群细胞群中断裂的相互易位。使用我们的系统的屏幕导致鉴定了几种基因突变,这些基因突变升高了依赖NHEJ依赖性染色体易位的频率。通过该系统,我们发现了特定的DNA损伤监视途径在抑制染色体易位中的作用。该建议的重点是识别和表征抑制染色体易位的遗传网络。结合遗传学,细胞生物学和生物化学的方法将用于提供机械洞察,以了解NHEJ介导的染色体易位的遗传和机械基础。这些研究将阐明导致人类染色体易位的分子机制,并可能为晚期治疗或预防血液癌的晚期治疗提供概念基础。公共卫生相关性:我们的研究计划的长期目标是剖析导致致癌染色体易位的分子机制。已知通过我们的研究鉴定的基因突变可以强制执行一种DNA损伤监测途径之一,该途径可以抑制染色体易位,并使患者容易受到染色体易位和淋巴性恶性肿瘤的影响。该应用将确定并表征损害监测和其他抑制染色体易位的机制,以了解血液癌的缺陷并发展新颖的预防性和/或治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SANG EUN LEE其他文献
SANG EUN LEE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SANG EUN LEE', 18)}}的其他基金
相似国自然基金
独特二聚天然产物Phomoxanthone A 生物合成关键酶学机制研究及衍生物化学酶法构建
- 批准号:32370056
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
施氮与混交对降香黄檀—沉香树植物−土壤−微生物化学计量的影响
- 批准号:32360366
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于生物化学与稳定同位素的达里湖水内外源补排机制及演化历史重构
- 批准号:52369014
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
亚洲落叶松八齿小蠹信息素的生物合成及JHIII调控机制
- 批准号:32371896
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
真菌漆酶驱动根际腐殖化减低粪肥源雌激素作物吸收的生物化学机理
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Deciphering the mechanics of microtubule networks in mitosis
破译有丝分裂中微管网络的机制
- 批准号:
10637323 - 财政年份:2023
- 资助金额:
$ 23.52万 - 项目类别:
Spatiotemporal visualization of adenylyl cyclase signaling
腺苷酸环化酶信号传导的时空可视化
- 批准号:
10664707 - 财政年份:2023
- 资助金额:
$ 23.52万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 23.52万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 23.52万 - 项目类别:
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 23.52万 - 项目类别: