The mechanisms of eukaryotic translation termination and ribosomal recycling
真核生物翻译终止和核糖体回收的机制
基本信息
- 批准号:7808758
- 负责人:
- 金额:$ 29.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingBindingBiological AssayC-terminalComplexCryoelectron MicroscopyDNA Sequence RearrangementDataDevelopmentDissociationEnsureEstersEukaryotaEventGTP BindingGuanosine TriphosphateGuanosine Triphosphate PhosphohydrolasesHereditary DiseaseHomologous GeneHydrolysisIn VitroIndividualIonsKineticsMediatingMessenger RNAModelingMolecular ConformationMutagenesisNeutronsNonsense CodonNucleotidesPeptide Initiation FactorsPeptidesPeptidyltransferasePositioning AttributePrintingProcessProkaryotic CellsProtein BiosynthesisRecyclingResearch PersonnelRibosomesRoentgen RaysRoleSiteSolutionsSon of Sevenless ProteinsStagingStructureTechniquesTerminator CodonTestingToesTransfer RNATranslationsWorkcrosslinkpeptidyl-tRNApolypeptidereconstitutionrelease factorribosome releasing factorstopped-flow fluorescencesuccesstermination factortranslation factor
项目摘要
DESCRIPTION (provided by applicant): Eukaryotic translation termination is triggered by peptide release factors eRF1 and eRF3. Whereas eRF1 recognizes the stop codon and induces hydrolysis of peptidyl-tRNA, eRF3's function has for long been obscure. We recently reconstituted all steps of eukaryotic translation in vitro using purified ribosomal subunits, 9 initiation, 2 elongation and 2 termination factors and aminoacyl-tRNAs on mRNA encoding a tetrapeptide followed by a stop codon. This allowed us to propose a model for eukaryotic termination that accounts for the cooperative action of eRF1 and eRF3 in ensuring fast release of nascent polypeptide. According to this model, binding of eRF1, eRF3 and GTP to pre-termination complexes first induces a structural rearrangement, which is manifested as a two-nucleotide forward shift of the toeprint attributed to pre-termination complexes, that leads to GTP hydrolysis followed by rapid hydrolysis of peptidyl-tRNA. Cooperativity between eRF1 and eRF3 requires their direct binding through their C-terminal domains. The overall objective of this proposal is to further characterize the mechanism of eukaryotic translation termination and to investigate the completely unknown mechanism of the next, final stage of eukaryotic protein synthesis, ribosomal recycling. Fast kinetics techniques (quench-flow and stopped-flow) will be applied to determine rate constants for GTP hydrolysis and peptide release, to identify intermediate steps (e.g. conformational changes in termination complexes) and to define their kinetics in order to establish a complete kinetic frame-work of termination. The interaction between eRF1 and eRF3 will be studied by small-angle X-ray and neutron scattering. Sharply focused mutagenesis combined with detailed functional assays will be employed to determine the mechanism, by which interaction of eRF3 with eRF1 stimulates eRF3 s GTPase activity and its binding to GTP. To obtain a comprehensive structural overview of termination, the positions of tRNA, mRNA and both release factors, and conformational states of SOS ribosomes in pre-termination, post-termination and various termination complexes will be determined using a combination of directed UV cross-linking and cryo-electron microscopy. Our success in reconstituting in vitro initiation, elongation and termination will now allow us to investigate the mechanism of the last stage of protein synthesis, ribosomal recycling. To delineate the mechanism of eukaryotic post-termination ribosomal recycling and to establish the order of events, the factor requirements for all steps in this process (release of deacylated tRNA and mRNA, and dissociation of 808 ribosomes into subunits) will be determined. This approach will yield the first model of eukaryotic ribosomal recycling. Translation termination at premature stop codon (PSC) is a frequent cause of genetic disease. Detailed understanding of the mechanism of termination will facilitate rational development of more efficacious agents for PSC suppression therapy.
描述(由申请人提供):真核翻译终止由肽释放因子eRF 1和eRF 3触发。eRF 1识别终止密码子并诱导肽基-tRNA水解,而eRF 3的功能长期以来一直不清楚。我们最近重建的所有步骤的真核生物在体外翻译使用纯化的核糖体亚基,9个起始,2个延伸和2个终止因子和氨酰-tRNA的mRNA编码的四肽,随后终止密码子。这使我们能够提出一种真核生物终止的模型,该模型解释了eRF 1和eRF 3在确保新生多肽快速释放方面的协同作用。根据该模型,eRF 1、eRF 3和GTP与终止前复合物的结合首先诱导结构重排,其表现为归因于终止前复合物的足印的两个核苷酸的前移,这导致GTP水解,随后是肽基-tRNA的快速水解。eRF 1和eRF 3之间的协同作用需要它们通过它们的C-末端结构域直接结合。本提案的总体目标是进一步表征真核生物翻译终止的机制,并研究真核生物蛋白质合成的下一个最后阶段核糖体再循环的完全未知的机制。快速动力学技术(猝灭流和停流)将被应用于确定GTP水解和肽释放的速率常数,以确定中间步骤(例如终止复合物中的构象变化)并定义其动力学,以建立完整的终止动力学框架。eRF 1和eRF 3之间的相互作用将通过小角X射线和中子散射进行研究。将采用精确聚焦的诱变结合详细的功能测定来确定eRF 3与eRF 1的相互作用刺激eRF 3的GTP酶活性及其与GTP结合的机制。为了获得一个全面的结构概述的终止,tRNA,mRNA和两个释放因子的位置,SOS核糖体在终止前,终止后和各种终止复合物的构象状态将使用定向UV交联和冷冻电子显微镜的组合来确定。我们在体外重建起始、延伸和终止的成功,将使我们能够研究蛋白质合成的最后阶段,核糖体再循环的机制。为了描述真核细胞终止后核糖体再循环的机制并建立事件的顺序,将确定该过程中所有步骤(脱酰tRNA和mRNA的释放以及808核糖体解离成亚基)的因子要求。这种方法将产生第一个真核生物核糖体再循环模型。翻译终止于提前终止密码子(PSC)是遗传疾病的常见原因。对终止机制的详细了解将有助于合理开发更有效的PSC抑制治疗药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TATYANA V PESTOVA其他文献
TATYANA V PESTOVA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TATYANA V PESTOVA', 18)}}的其他基金
Mechanisms of eukaryotic translation and ribosome-associated mRNA surveillance and protein quality control
真核翻译机制和核糖体相关 mRNA 监测和蛋白质质量控制
- 批准号:
9912787 - 财政年份:2017
- 资助金额:
$ 29.34万 - 项目类别:
THE MECHANISMS OF EUKARYOTIC TRANSLATION TERMINATION AND RIBOSOMAL RECYCLING
真核翻译终止和核糖体回收的机制
- 批准号:
8727581 - 财政年份:2007
- 资助金额:
$ 29.34万 - 项目类别:
The mechanisms of eukaryotic translation termination and ribosomal recycling
真核生物翻译终止和核糖体回收的机制
- 批准号:
7250570 - 财政年份:2007
- 资助金额:
$ 29.34万 - 项目类别:
The mechanisms of eukaryotic translation termination and ribosomal recycling
真核生物翻译终止和核糖体回收的机制
- 批准号:
7612116 - 财政年份:2007
- 资助金额:
$ 29.34万 - 项目类别:
The mechanisms of eukaryotic translation termination and ribosomal recycling
真核生物翻译终止和核糖体回收的机制
- 批准号:
7390290 - 财政年份:2007
- 资助金额:
$ 29.34万 - 项目类别:
THE MECHANISMS OF EUKARYOTIC TRANSLATION TERMINATION AND RIBOSOMAL RECYCLING
真核翻译终止和核糖体回收的机制
- 批准号:
8372177 - 财政年份:2007
- 资助金额:
$ 29.34万 - 项目类别:
THE MECHANISMS OF EUKARYOTIC TRANSLATION TERMINATION AND RIBOSOMAL RECYCLING
真核翻译终止和核糖体回收的机制
- 批准号:
8538426 - 财政年份:2007
- 资助金额:
$ 29.34万 - 项目类别:
THE MECHANISMS OF EUKARYOTIC TRANSLATION TERMINATION AND RIBOSOMAL RECYCLING
真核翻译终止和核糖体回收的机制
- 批准号:
8913199 - 财政年份:2007
- 资助金额:
$ 29.34万 - 项目类别:
Mechanism of ribosomal subunit joining in eukaryotes
真核生物核糖体亚基连接机制
- 批准号:
6526026 - 财政年份:2001
- 资助金额:
$ 29.34万 - 项目类别:
Mechanism of ribosomal subunit joining in eukaryotes
真核生物核糖体亚基连接机制
- 批准号:
6917834 - 财政年份:2001
- 资助金额:
$ 29.34万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 29.34万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 29.34万 - 项目类别:
Continuing Grant
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
- 批准号:
DP240103289 - 财政年份:2024
- 资助金额:
$ 29.34万 - 项目类别:
Discovery Projects
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 29.34万 - 项目类别:
Fellowship
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
- 批准号:
EP/X039420/1 - 财政年份:2024
- 资助金额:
$ 29.34万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
- 批准号:
2317664 - 财政年份:2024
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 29.34万 - 项目类别:
Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 29.34万 - 项目类别:
Discovery Projects
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 29.34万 - 项目类别:
Research Grant














{{item.name}}会员




