NIH Director's Pioneer Award
NIH 院长先锋奖
基本信息
- 批准号:7683181
- 负责人:
- 金额:$ 76.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-30 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAcute Lymphocytic LeukemiaAddressAdoptedAdvisory CommitteesAffinityAffinity ChromatographyAlgorithmsAmericanAmino Acid SequenceAmino AcidsAnimal ModelAntibodiesAnticodonArtsAsthmaAttributes of ChemicalsAustraliaAwardBasic ScienceBasophilsBindingBiochemistryBiologicalBiological AvailabilityBiological FactorsBiopolymersBlast PhaseBreedingCC chemokine receptor 3CaliforniaCell Membrane PermeabilityCellsChemical EngineeringChemical EvolutionChemicalsChemistryChicagoClinicClinical TrialsCodeCollaborationsCollectionColorCommitCommunitiesComplexCoupledCrystallographyCysteineCytoskeletal FilamentsDNADataDengueDengue VirusDeuteriumDevelopmentDiscipline of NursingDiseaseDoctor of MedicineDoctor of PhilosophyDropsDrug PrescriptionsDrug resistanceEconomicsEducationElectrostaticsEmploymentEngineeringEnvironmentEnzymesEosinophiliaEquilibriumEuropeEvolutionExpenditureFederal GovernmentFigs - dietaryFloodsFreedomFundingGenerationsGenesGenetic CodeGleevecGoalsGrowthHumanHuman ResourcesHydrogenImageIn VitroIndividualIndustryInfectionInstitutesInstitutionInterferon ReceptorInterferonsJournalsKilogramKineticsKnockout MiceKnowledgeKnowledge acquisitionLaboratoriesLeadLearningLeftLeucine EnkephalinLibrariesLigand BindingLigandsLocationMapsMassachusettsMeasurementMeasuresMedical ResearchMedicineMembraneMetabolicMethodsModelingModificationMolecularMolecular BiologyMonitorMusMyelogenousNMR SpectroscopyNS2-3 proteaseNamesNatureNucleic AcidsOralOrganic ChemistryOrganic SynthesisPathway interactionsPatientsPeptide Nucleic AcidsPeptide Sequence DeterminationPeptide aptamersPeptidesPersonsPhage DisplayPharmaceutical PreparationsPharmacologic SubstancePhasePhosphotransferasesPhysiologyPilot ProjectsPlasmidsPolyribosomesPolystyrenesPopulationPositioning AttributePositron-Emission TomographyPostdoctoral FellowPricePrimatesPrincipal InvestigatorProbabilityProblem SolvingProcessProfessional EducationPropertyProtease InhibitorProtein FootprintingProtein Tyrosine KinaseProteinsProtonsPublicationsRNAReactionReagentRecordsResearchResearch InfrastructureResearch PersonnelResistanceResolutionResourcesRotationRouteRunningSCID MiceSchemeScienceScientistScreening for cancerScreening procedureSecureSeriesShapesSignal TransductionSocietiesSolidSolventsSpecificitySpeedStagingStructureStudentsSystemT-Cell ReceptorTechniquesTechnologyTest ResultTestingTherapeuticTranslatingTranslation ProcessTranslationsTriose-Phosphate IsomeraseTrustTubeTyrosineUnited StatesUnited States National Institutes of HealthUniversitiesVariantVertebral columnWorkZebrafishairway hyperresponsivenessanticancer researchaptamerbasecatalystcell typecombinatorial chemistrycostdesigndrug developmentdrug discoveryempoweredeosinophileotaxin receptorexperiencefallsgenetic manipulationgraduate studenthigh riskhigh throughput screeninginhibitor/antagonistinsightinterleukin-5 receptorkinase inhibitorknowledge baseleukemiamacromoleculemedical schoolsmillisecondmolecular mechanicsmolecular recognitionmouse modelmutantnew technologynewsnovelolfactory receptorpost-doctoral trainingpre-clinicalprofessorprogramsprotein protein interactionprotein structurereceptorresearch and developmentroutine practicesensorsmall moleculestructural biologytechnology developmentthree dimensional structuretooltrend
项目摘要
While the understanding of life at the molecular level has advanced with
breathtaking speed over the last century, a practical ability to solve medical problems
through molecular intervention has not developed at the same pace. The global HIV
epidemic, and our inability to effectively treat cancer, both evince this basic fact. Of
course, there are many reasons for this. The human body is a complex machine. We may
have a list of the parts, but the function of most of them remains a mystery. Recombinant
DNA technology, the scientific breakthrough that revolutionized the study of human
disease, has not also provided a general prescription for treating disease. Drugs are the
primary tools for this purpose, and the synthetic organic chemistry required to fashion
them today is much the same as it was a century ago. Finally, the economic hurdles
associated with drug discovery are daunting.
This Pioneer proposal addresses a technology that can close the gap between basic
research discoveries, and the application of such insights to medicine. The approach,
called "chemical evolution" (see below), provides the means to breed drugs out of
enormous synthetic small-molecule populations. It has the potential to transform drug
discovery from a process requiring hundreds of chemist-years and the infrastructure of a
large pharmaceutical company, to something a graduate student with knowledge of basic
molecular biology can accomplish in a month. Chemical evolution is closely related to
nucleic-acid and protein evolution techniques with proven track records in academia and
industry. Moreover, our recent pilot studies have definitively established the feasibility of
evolving small molecules[1-3]. These studies were the subject of two Science and
Technology review articles in Chemical and Engineering News over the last year, and
they were named a "Chemistry Highlight" for 2004 (a short annual compilation by the
American Chemical Society of key advances in chemistry)[4-6]. Despite its enormous
potential and the excitement it engenders, three different federal agencies have declined
to fund further development of the technology on the grounds that it is too ambitious and
too risky.
尽管对分子水平的生命的理解已经发展
上个世纪令人惊叹的速度,解决医疗问题的实用能力
通过分子干预尚未以相同的速度发展。全球艾滋病毒
流行病,以及我们无法有效治疗癌症,都证明了这一基本事实。的
当然,有很多原因。人体是一台复杂的机器。我们可能
列出了零件的列表,但是大多数零件的功能仍然是一个谜。重组
DNA技术,科学的突破,彻底改变了人类的研究
疾病,还没有提供治疗疾病的一般处方。毒品是
为此目的的主要工具以及时尚所需的合成有机化学
今天他们与一个世纪前大致相同。最后,经济障碍
与药物发现相关的是令人生畏的。
该开拓者的提案解决了一项可以缩小基本之间差距的技术
研究发现以及这种见解在医学上的应用。方法,
称为“化学演化”(见下文),提供了将药物从
巨大的合成小分子种群。它有可能改变药物
从需要数百种化学师的过程中发现和
大型制药公司,对有知识知识的研究生
分子生物学可以在一个月内完成。化学演化与
核酸和蛋白质进化技术具有学术界的良好往绩记录和
行业。此外,我们最近的试点研究已经确定了
进化的小分子[1-3]。这些研究是两种科学的主题,
去年,化学和工程新闻中的技术评论文章,
他们被评为2004年的“化学重点”(由
美国化学关键化学进步学会)[4-6]。尽管它很大
潜力和兴奋引起的,三个不同的联邦机构下降了
为技术的进一步发展,理由是它太雄心勃勃
太冒险了。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Highly parallel translation of DNA sequences into small molecules.
- DOI:10.1371/journal.pone.0028056
- 发表时间:2012
- 期刊:
- 影响因子:3.7
- 作者:Weisinger RM;Wrenn SJ;Harbury PB
- 通讯作者:Harbury PB
Mesofluidic devices for DNA-programmed combinatorial chemistry.
- DOI:10.1371/journal.pone.0032299
- 发表时间:2012
- 期刊:
- 影响因子:3.7
- 作者:Weisinger RM;Marinelli RJ;Wrenn SJ;Harbury PB
- 通讯作者:Harbury PB
Expedient synthesis of a modular phosphate affinity reagent.
- DOI:10.1021/bc900538b
- 发表时间:2010-06-16
- 期刊:
- 影响因子:4.7
- 作者:Tilmans, Nicolas P.;Krusemark, Casey J.;Harbury, Pehr A. B.
- 通讯作者:Harbury, Pehr A. B.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PEHR A HARBURY其他文献
PEHR A HARBURY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PEHR A HARBURY', 18)}}的其他基金
A MOLECULAR RULER FOR DIRECT MEASUREMENT OF DISTANCE DISTRIBUTIONS IN SOLUTIONS
用于直接测量溶液中距离分布的分子尺
- 批准号:
7597961 - 财政年份:2007
- 资助金额:
$ 76.17万 - 项目类别:
A MOLECULAR RULER FOR DIRECT MEASUREMENT OF DISTANCE DISTRIBUTIONS IN SOLUTIONS
用于直接测量溶液中距离分布的分子尺
- 批准号:
7370442 - 财政年份:2006
- 资助金额:
$ 76.17万 - 项目类别:
A MOLECULAR RULER FOR DIRECT MEASUREMENT OF DISTANCE DISTRIBUTIONS IN SOLUTIONS
用于直接测量溶液中距离分布的分子尺
- 批准号:
7180421 - 财政年份:2005
- 资助金额:
$ 76.17万 - 项目类别:
相似国自然基金
RBMX通过m6A依赖性相分离调控急性T淋巴细胞白血病发生发展的作用及机制研究
- 批准号:82300189
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
解析急性淋巴细胞白血病染色质可及性异常导致其糖皮质激素耐药的底层分子机制
- 批准号:82270155
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
基因工程敲减IL-6/CD40L的CAR-T细胞在复发/难治性急性B淋巴细胞白血病治疗中提高安全性的机制研究
- 批准号:82200249
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
解析急性淋巴细胞白血病染色质可及性异常导致其糖皮质激素耐药的底层分子机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基因工程敲减IL-6/CD40L的CAR-T细胞在复发/难治性急性B淋巴细胞白血病治疗中提高安全性的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:
10572539 - 财政年份:2023
- 资助金额:
$ 76.17万 - 项目类别:
Alternatively spliced cell surface proteins as drivers of leukemogenesis and targets for immunotherapy
选择性剪接的细胞表面蛋白作为白血病发生的驱动因素和免疫治疗的靶点
- 批准号:
10648346 - 财政年份:2023
- 资助金额:
$ 76.17万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 76.17万 - 项目类别:
Targeting CD83 to reduce leukemia relapse and GVHD after allogeneic hematopoietic cell transplantation
靶向CD83减少同种异体造血细胞移植后白血病复发和GVHD
- 批准号:
10573570 - 财政年份:2023
- 资助金额:
$ 76.17万 - 项目类别: