NIH Director's Pioneer Award
NIH 院长先锋奖
基本信息
- 批准号:7683181
- 负责人:
- 金额:$ 76.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-30 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAcute Lymphocytic LeukemiaAddressAdoptedAdvisory CommitteesAffinityAffinity ChromatographyAlgorithmsAmericanAmino Acid SequenceAmino AcidsAnimal ModelAntibodiesAnticodonArtsAsthmaAttributes of ChemicalsAustraliaAwardBasic ScienceBasophilsBindingBiochemistryBiologicalBiological AvailabilityBiological FactorsBiopolymersBlast PhaseBreedingCC chemokine receptor 3CaliforniaCell Membrane PermeabilityCellsChemical EngineeringChemical EvolutionChemicalsChemistryChicagoClinicClinical TrialsCodeCollaborationsCollectionColorCommitCommunitiesComplexCoupledCrystallographyCysteineCytoskeletal FilamentsDNADataDengueDengue VirusDeuteriumDevelopmentDiscipline of NursingDiseaseDoctor of MedicineDoctor of PhilosophyDropsDrug PrescriptionsDrug resistanceEconomicsEducationElectrostaticsEmploymentEngineeringEnvironmentEnzymesEosinophiliaEquilibriumEuropeEvolutionExpenditureFederal GovernmentFigs - dietaryFloodsFreedomFundingGenerationsGenesGenetic CodeGleevecGoalsGrowthHumanHuman ResourcesHydrogenImageIn VitroIndividualIndustryInfectionInstitutesInstitutionInterferon ReceptorInterferonsJournalsKilogramKineticsKnockout MiceKnowledgeKnowledge acquisitionLaboratoriesLeadLearningLeftLeucine EnkephalinLibrariesLigand BindingLigandsLocationMapsMassachusettsMeasurementMeasuresMedical ResearchMedicineMembraneMetabolicMethodsModelingModificationMolecularMolecular BiologyMonitorMusMyelogenousNMR SpectroscopyNS2-3 proteaseNamesNatureNucleic AcidsOralOrganic ChemistryOrganic SynthesisPathway interactionsPatientsPeptide Nucleic AcidsPeptide Sequence DeterminationPeptide aptamersPeptidesPersonsPhage DisplayPharmaceutical PreparationsPharmacologic SubstancePhasePhosphotransferasesPhysiologyPilot ProjectsPlasmidsPolyribosomesPolystyrenesPopulationPositioning AttributePositron-Emission TomographyPostdoctoral FellowPricePrimatesPrincipal InvestigatorProbabilityProblem SolvingProcessProfessional EducationPropertyProtease InhibitorProtein FootprintingProtein Tyrosine KinaseProteinsProtonsPublicationsRNAReactionReagentRecordsResearchResearch InfrastructureResearch PersonnelResistanceResolutionResourcesRotationRouteRunningSCID MiceSchemeScienceScientistScreening for cancerScreening procedureSecureSeriesShapesSignal TransductionSocietiesSolidSolventsSpecificitySpeedStagingStructureStudentsSystemT-Cell ReceptorTechniquesTechnologyTest ResultTestingTherapeuticTranslatingTranslation ProcessTranslationsTriose-Phosphate IsomeraseTrustTubeTyrosineUnited StatesUnited States National Institutes of HealthUniversitiesVariantVertebral columnWorkZebrafishairway hyperresponsivenessanticancer researchaptamerbasecatalystcell typecombinatorial chemistrycostdesigndrug developmentdrug discoveryempoweredeosinophileotaxin receptorexperiencefallsgenetic manipulationgraduate studenthigh riskhigh throughput screeninginhibitor/antagonistinsightinterleukin-5 receptorkinase inhibitorknowledge baseleukemiamacromoleculemedical schoolsmillisecondmolecular mechanicsmolecular recognitionmouse modelmutantnew technologynewsnovelolfactory receptorpost-doctoral trainingpre-clinicalprofessorprogramsprotein protein interactionprotein structurereceptorresearch and developmentroutine practicesensorsmall moleculestructural biologytechnology developmentthree dimensional structuretooltrend
项目摘要
While the understanding of life at the molecular level has advanced with
breathtaking speed over the last century, a practical ability to solve medical problems
through molecular intervention has not developed at the same pace. The global HIV
epidemic, and our inability to effectively treat cancer, both evince this basic fact. Of
course, there are many reasons for this. The human body is a complex machine. We may
have a list of the parts, but the function of most of them remains a mystery. Recombinant
DNA technology, the scientific breakthrough that revolutionized the study of human
disease, has not also provided a general prescription for treating disease. Drugs are the
primary tools for this purpose, and the synthetic organic chemistry required to fashion
them today is much the same as it was a century ago. Finally, the economic hurdles
associated with drug discovery are daunting.
This Pioneer proposal addresses a technology that can close the gap between basic
research discoveries, and the application of such insights to medicine. The approach,
called "chemical evolution" (see below), provides the means to breed drugs out of
enormous synthetic small-molecule populations. It has the potential to transform drug
discovery from a process requiring hundreds of chemist-years and the infrastructure of a
large pharmaceutical company, to something a graduate student with knowledge of basic
molecular biology can accomplish in a month. Chemical evolution is closely related to
nucleic-acid and protein evolution techniques with proven track records in academia and
industry. Moreover, our recent pilot studies have definitively established the feasibility of
evolving small molecules[1-3]. These studies were the subject of two Science and
Technology review articles in Chemical and Engineering News over the last year, and
they were named a "Chemistry Highlight" for 2004 (a short annual compilation by the
American Chemical Society of key advances in chemistry)[4-6]. Despite its enormous
potential and the excitement it engenders, three different federal agencies have declined
to fund further development of the technology on the grounds that it is too ambitious and
too risky.
虽然在分子水平上对生命的理解随着
以惊人的速度跨越上个世纪,具有解决医疗问题的实际能力
并没有以同样的速度发展。全球艾滋病毒
流行病,以及我们无法有效治疗癌症,都表明了这一基本事实。的
当然,这是有很多原因的。人体是一台复杂的机器。我们可能
我有一个零件清单,但其中大部分的功能仍然是个谜。重组
DNA技术是一项科学突破,它彻底改变了人类的研究。
疾病,也没有提供治疗疾病的通用处方。毒品是
这一目的的主要工具,以及时尚所需的合成有机化学
他们今天和世纪前差不多。最后,经济障碍
与药物发现相关的问题令人生畏。
这项先锋计划提出了一项技术,可以缩小差距
研究发现,以及这些见解在医学上的应用。方法,
称为“化学进化”(见下文),提供了从药物中繁殖药物的方法。
巨大的合成小分子群体。它有潜力将药物
从一个需要数百个化学家年和基础设施的过程中发现
大型制药公司,以东西一个研究生的基本知识
分子生物学可以在一个月内完成化学演化与
核酸和蛋白质进化技术在学术界有着良好的记录,
行业此外,我们最近的试验性研究已明确确定了以下做法的可行性:
进化小分子[1-3]。这些研究是两个科学和
去年《化学与工程新闻》上的技术评论文章,
它们被命名为2004年的“化学亮点”(由
美国化学学会(American Chemical Society of Key Advances in Chemistry)[4-6]。尽管其巨大的
潜力和它所带来的兴奋,三个不同的联邦机构已经拒绝了
资助这项技术的进一步发展,理由是它过于雄心勃勃,
太冒险了
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Highly parallel translation of DNA sequences into small molecules.
将DNA序列高度平行地翻译成小分子。
- DOI:10.1371/journal.pone.0028056
- 发表时间:2012
- 期刊:
- 影响因子:3.7
- 作者:Weisinger RM;Wrenn SJ;Harbury PB
- 通讯作者:Harbury PB
Mesofluidic devices for DNA-programmed combinatorial chemistry.
- DOI:10.1371/journal.pone.0032299
- 发表时间:2012
- 期刊:
- 影响因子:3.7
- 作者:Weisinger RM;Marinelli RJ;Wrenn SJ;Harbury PB
- 通讯作者:Harbury PB
Expedient synthesis of a modular phosphate affinity reagent.
- DOI:10.1021/bc900538b
- 发表时间:2010-06-16
- 期刊:
- 影响因子:4.7
- 作者:Tilmans, Nicolas P.;Krusemark, Casey J.;Harbury, Pehr A. B.
- 通讯作者:Harbury, Pehr A. B.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PEHR A HARBURY其他文献
PEHR A HARBURY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PEHR A HARBURY', 18)}}的其他基金
A MOLECULAR RULER FOR DIRECT MEASUREMENT OF DISTANCE DISTRIBUTIONS IN SOLUTIONS
用于直接测量溶液中距离分布的分子尺
- 批准号:
7597961 - 财政年份:2007
- 资助金额:
$ 76.17万 - 项目类别:
A MOLECULAR RULER FOR DIRECT MEASUREMENT OF DISTANCE DISTRIBUTIONS IN SOLUTIONS
用于直接测量溶液中距离分布的分子尺
- 批准号:
7370442 - 财政年份:2006
- 资助金额:
$ 76.17万 - 项目类别:
A MOLECULAR RULER FOR DIRECT MEASUREMENT OF DISTANCE DISTRIBUTIONS IN SOLUTIONS
用于直接测量溶液中距离分布的分子尺
- 批准号:
7180421 - 财政年份:2005
- 资助金额:
$ 76.17万 - 项目类别:
相似海外基金
Understanding of the onset and recurrence pattern of intractable acute lymphocytic leukemia based on clone analysis
基于克隆分析了解难治性急性淋巴细胞白血病的发病和复发模式
- 批准号:
20K08723 - 财政年份:2020
- 资助金额:
$ 76.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel Inhibitors of Multi-Drug-Resistant Mutants of BCR-ABL for the Treatment of Chronic Myelogenous Leukemia (CML) and Ph Positive Acute Lymphocytic Leukemia (ALL).
BCR-ABL 多重耐药突变体的新型抑制剂,用于治疗慢性粒细胞白血病 (CML) 和 Ph 阳性急性淋巴细胞白血病 (ALL)。
- 批准号:
9047400 - 财政年份:2015
- 资助金额:
$ 76.17万 - 项目类别:
The Role of Genetic Variants in Sensitivity to Methotrexate in Acute Lymphocytic Leukemia Survivors
遗传变异在急性淋巴细胞白血病幸存者对甲氨蝶呤敏感性中的作用
- 批准号:
319114 - 财政年份:2014
- 资助金额:
$ 76.17万 - 项目类别:
Fellowship Programs
Targeting the Bone Marrow Microenvironment In Acute Lymphocytic Leukemia
针对急性淋巴细胞白血病的骨髓微环境
- 批准号:
8595788 - 财政年份:2013
- 资助金额:
$ 76.17万 - 项目类别:
Targeting hypoxic microenvironment in Acute Lymphocytic Leukemia
针对急性淋巴细胞白血病的缺氧微环境
- 批准号:
8023518 - 财政年份:2011
- 资助金额:
$ 76.17万 - 项目类别:
Targeting hypoxic microenvironment in Acute Lymphocytic Leukemia
针对急性淋巴细胞白血病的缺氧微环境
- 批准号:
8404025 - 财政年份:2011
- 资助金额:
$ 76.17万 - 项目类别:
Targeting hypoxic microenvironment in Acute Lymphocytic Leukemia
针对急性淋巴细胞白血病的缺氧微环境
- 批准号:
8220724 - 财政年份:2011
- 资助金额:
$ 76.17万 - 项目类别:
Targeting hypoxic microenvironment in Acute Lymphocytic Leukemia
针对急性淋巴细胞白血病的缺氧微环境
- 批准号:
8599754 - 财政年份:2011
- 资助金额:
$ 76.17万 - 项目类别:
INSULIN RESISTANCE IN CHILDREN WITH ACUTE LYMPHOCYTIC LEUKEMIA UNDERGOING INDUCT
正在接受治疗的急性淋巴细胞白血病儿童的胰岛素抵抗
- 批准号:
8356701 - 财政年份:2010
- 资助金额:
$ 76.17万 - 项目类别:
INSULIN RESISTANCE IN CHILDREN WITH ACUTE LYMPHOCYTIC LEUKEMIA UNDERGOING INDUCT
正在接受治疗的急性淋巴细胞白血病儿童的胰岛素抵抗
- 批准号:
8166720 - 财政年份:2009
- 资助金额:
$ 76.17万 - 项目类别: