Epilepsy and dendritic excitability
癫痫和树突状兴奋性
基本信息
- 批准号:7779790
- 负责人:
- 金额:$ 34.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimal ModelAnisomycinAntiepileptic AgentsBiochemicalBiochemical PathwayBiological AssayBrainBrain regionChronicCyclic NucleotidesDataDependenceDevelopmentDown-RegulationElectroencephalographyElectrophysiology (science)EpilepsyEpileptogenesisFamilyFrequenciesFundingGated Ion ChannelGeneralized seizuresGenerationsHCN1 channelHippocampus (Brain)Ion ChannelLinkMAP Kinase GeneMAPK14 geneMediatingMembrane PotentialsMitogensMolecularNeocortexNeuronsOutcomeOutcome StudyPathogenesisPathway interactionsPatientsPharmaceutical PreparationsPhosphoric Monoester HydrolasesPhosphorylationPhosphotransferasesPilocarpinePlayPopulationPreparationProcessPropertyProtein DephosphorylationRegulationRoleSeizuresSeveritiesSignal PathwaySignal TransductionSliceStatus EpilepticusTechniquesTemporal Lobe EpilepsyTestingThalamic structureUp-Regulationcyclic-nucleotide gated ion channelsdisabilitydrug developmentimprovedin vivoinhibitor/antagonistknockout animallamotrigineneocorticalnervous system disorderneuronal excitabilitynovelpreventpublic health relevanceresearch studytreatment strategyvoltage
项目摘要
DESCRIPTION (provided by applicant): Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are voltage-gated ion channels that modulate excitability in several brain regions involved in the pathogenesis of epilepsy, including hippocampus, neocortex, and thalamus. The preponderance of evidence shows that downregulation of Ih, the current generated by HCN channels, is associated with neuronal hyperexcitability and epilepsy. In the prior funding period of this project, the onset of epilepsy in an animal model was found to be associated with loss of HCN channel expression, and downregulation of HCN channel gating (i.e. hyperpolarization of Ih voltage-dependent activation). This latter change in HCN channel properties may be particularly important in the generation of seizures, as lamotrigine, an antiepileptic drug, produces upregulation of HCN channel gating as part of its antiepileptic action. A novel modulator of HCN channel gating, p38 mitogen- activated kinase (p38 MAPK), was characterized as well, with inhibition of p38 MAPK causing downregulation of HCN gating. In the present proposal, the links between phosphorylation (i.e. kinase or phosphatase) signaling and HCN channels will be explored. The overall hypothesis is that the downregulation of HCN channel gating that occurs in epilepsy may be due to loss of kinase activity, such as that of p38 MAPK, or to increased phosphatase activity. We will also explore whether direct modulation of p38 MAPK activity exerts an antiepileptic action in vivo. Specifically, we will answer the following questions: 1) Is altered HCN channel gating in epilepsy associated with loss of kinase activity? 2) Is altered HCN channel gating in epilepsy associated with increased phosphatase activity? 3) Is upregulation of HCN gating via activation of p38 MAPK signaling effective in an animal model of temporal lobe epilepsy (TLE)? To answer these questions, we will use cellular electrophysiology techniques in the brain slice preparation, biochemical techniques to assay kinase and phosphatase activity, and long-term video-electroencephalography (VEEG) in the pilocarpine animal model of epilepsy. The outcome of these experiments should increase our understanding of the molecular mechanisms by which seizures alter ion channel biophysical properties, determine whether epilepsy is associated with derangement of phosphorylation signaling pathways, and explore possible novel antiepileptic treatment strategies.
PUBLIC HEALTH RELEVANCE: The current proposal will study the mechanisms of epilepsy at cellular and molecular levels. Epilepsy is one of the most common neurological diseases, affecting nearly 1% of the population, and causing significant disability in the 30% of epilepsy patients whose seizures are uncontrolled by existing medication. The outcome of this study may identify specific biochemical pathways that could be targeted for development of novel antiepileptic drugs, improving the likelihood that currently poorly-controlled patients may one day be seizure-free.
描述(由申请人提供):超极化激活的环核苷酸门控(HCN)通道是电压门控离子通道,可调节与癫痫发病有关的几个脑区域的兴奋性,包括海马、新皮层和丘脑。大量证据表明,HCN通道产生的电流Ih的下调与神经元高兴奋性和癫痫有关。在本项目前期资助期内,在动物模型中发现癫痫发作与HCN通道表达缺失和HCN通道门控下调(即Ih电压依赖性激活的超极化)有关。后一种HCN通道特性的改变在癫痫发作的产生中可能特别重要,因为抗癫痫药物拉莫三嗪在其抗癫痫作用中会产生HCN通道门控上调。一种新的HCN通道门控调节剂p38丝裂原活化激酶(p38 MAPK)也被表征为抑制p38 MAPK导致HCN门控下调。在本提案中,将探讨磷酸化(即激酶或磷酸酶)信号传导与HCN通道之间的联系。总的假设是,癫痫中HCN通道门控的下调可能是由于激酶活性的丧失,如p38 MAPK,或磷酸酶活性的增加。我们还将探讨p38 MAPK活性的直接调节是否在体内发挥抗癫痫作用。具体来说,我们将回答以下问题:1)癫痫患者HCN通道门控改变是否与激酶活性丧失相关?2)癫痫患者HCN通道门控改变是否与磷酸酶活性增加有关?3)在颞叶癫痫(TLE)动物模型中,通过激活p38 MAPK信号来上调HCN门控是否有效?为了回答这些问题,我们将在匹罗卡品癫痫动物模型中使用细胞电生理学技术制备脑切片,生化技术测定激酶和磷酸酶活性,以及长期视频脑电图(VEEG)。这些实验的结果将增加我们对癫痫发作改变离子通道生物物理特性的分子机制的理解,确定癫痫是否与磷酸化信号通路紊乱有关,并探索可能的新型抗癫痫治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NICHOLAS P POOLOS其他文献
NICHOLAS P POOLOS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NICHOLAS P POOLOS', 18)}}的其他基金
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




