Computer Aided Diagnosis and Followup of Alzheimer's Disease
阿尔茨海默病的计算机辅助诊断和随访
基本信息
- 批准号:7898894
- 负责人:
- 金额:$ 11.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-20 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:AgingAlgorithmsAlzheimer&aposs DiseaseAutomobile DrivingAutopsyAwardBiological MarkersBiometryBrainCharacteristicsClinicalCognitiveComputer-Assisted DiagnosisComputing MethodologiesDataData SetDetectionDevelopmentDiagnosisDiffusionDiseaseEarly DiagnosisEmotionalEvaluationExplosionFamilyFollow-Up StudiesFutureGeneral PopulationHandHealthcareImageImageryKnowledgeLeast-Squares AnalysisMagnetic Resonance ImagingMapsMeasurementMeasuresMedical ImagingMethodsModelingMonitorNeuroanatomyNeurobiologyNeurologicNeurologyPatientsPhysiciansPlayPopulationPrincipal InvestigatorProcessPropertyPublic HealthReproducibilityResearchRoleSample SizeScanningSeriesSocietiesSolutionsSpecialistSurfaceSystems AnalysisThickTimeTissuesTrainingTranslatingbasecareercareer developmentclinical Diagnosisclinical practicecomputer frameworkcomputerized toolscostdisabilityexperiencefollow-upgray matterneurogeneticsneuroimagingneuropathologynovelpredictive modelingprogramsreconstructionsocialtheoriestoolvector
项目摘要
DESCRIPTION (provided by applicant):
The aging of the population over the next quarter century will increase the already substantial personal, social and governmental costs of Alzheimer's disease. The future of healthcare of AD lies in the early diagnosis and treatment of AD. Neuroimaging is playing an increasingly critical role in research and clinical practice as valid early markers could be developed for both disease detection and monitoring. This research will come up with novel computational tools for computer aided diagnosis and followup of Alzheimer's disease, which is a substantial contribution to an important problem of general public health. During the award period, the applicant's career development focuses on developing novel computational methods for computer aided diagnosis and follow-up of AD. The applicant's career training focuses on 1) obtaining in-depth knowledge and hands-on experience in medical imaging; 2) obtaining in- depth knowledge in clinical neuroanatomy; 3) obtaining in-depth understanding of clinical diagnosis and follow-up of AD; 4) obtaining in-depth knowledge of biostatistics; 5) obtaining moderate knowledge in neuropathology, neurobiology, neurology, neurogenetics of AD. In this 4-year K01 proposal, the applicant will develop novel neuroimage analysis algorithms for Computer Aided Diagnosis and Follow-up of Alzheimer's Diseases (CADFAD). Specifically, we will 1) Develop and validate novel high-dimensional volume registration method based on deformation invariant attribute vectors (DIAV); (2) Develop and validate novel cortical surface based quantitation methods, including cortical surface reconstruction, registration, cortical attributes mapping, statistical inference, and visualization; and (3) Develop and validate novel gray matter diffusivity quantitation methods.
描述(由申请人提供):
下一个世纪人口的老龄化将增加阿尔茨海默病已经相当大的个人、社会和政府成本。AD的早期诊断和治疗是AD保健的未来。神经影像学在研究和临床实践中发挥着越来越重要的作用,因为可以开发有效的早期标记物用于疾病检测和监测。这项研究将为阿尔茨海默病的计算机辅助诊断和随访提供新的计算工具,这对公众健康的一个重要问题做出了重大贡献。在获奖期间,申请人的职业发展重点是开发新的计算机辅助诊断和AD随访的计算方法。申请人的职业培训重点是1)获得医学影像学方面的深入知识和实践经验; 2)获得临床神经解剖学方面的深入知识; 3)获得对AD临床诊断和随访的深入了解; 4)获得生物统计学方面的深入知识; 5)获得AD神经病理学,神经生物学,神经学,神经遗传学方面的中等知识。在这项为期4年的K 01提案中,申请人将开发用于阿尔茨海默病计算机辅助诊断和随访(CADFAD)的新型神经图像分析算法。具体来说,我们将1)开发并验证基于变形不变属性向量(DIAV)的新型高维体积配准方法;(2)开发并验证新型基于皮质表面的定量方法,包括皮质表面重建、配准、皮质属性映射、统计推断和可视化;(3)开发并验证新型灰质扩散率定量方法。
项目成果
期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A computational model of cerebral cortex folding.
- DOI:10.1007/978-3-642-04271-3_56
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients.
用于表征和区分 PTSD 患者的动态功能连接组学特征
- DOI:10.1002/hbm.22290
- 发表时间:2014-04
- 期刊:
- 影响因子:4.8
- 作者:Li, Xiang;Zhu, Dajiang;Jiang, Xi;Jin, Changfeng;Zhang, Xin;Guo, Lei;Zhang, Jing;Hu, Xiaoping;Li, Lingjiang;Liu, Tianming
- 通讯作者:Liu, Tianming
Optimization of functional brain ROIs via maximization of consistency of structural connectivity profiles.
通过最大化结构连接配置文件的一致性来优化功能性大脑投资回报率。
- DOI:10.1016/j.neuroimage.2011.08.037
- 发表时间:2012
- 期刊:
- 影响因子:5.7
- 作者:Zhu,Dajiang;Li,Kaiming;Faraco,CarlosCesar;Deng,Fan;Zhang,Degang;Guo,Lei;Miller,LStephen;Liu,Tianming
- 通讯作者:Liu,Tianming
Automatic cortical sulcal parcellation based on surface principal direction flow field tracking.
- DOI:10.1016/j.neuroimage.2009.03.039
- 发表时间:2009-07-15
- 期刊:
- 影响因子:5.7
- 作者:Li G;Guo L;Nie J;Liu T
- 通讯作者:Liu T
FMRI signal analysis using empirical mean curve decomposition.
- DOI:10.1109/tbme.2012.2221125
- 发表时间:2013-01
- 期刊:
- 影响因子:0
- 作者:Deng F;Zhu D;Lv J;Guo L;Liu T
- 通讯作者:Liu T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tianming Liu其他文献
Tianming Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tianming Liu', 18)}}的其他基金
Medical Image Computing and Computer Assisted Intervention (MICCAI) 2019
医学图像计算和计算机辅助干预 (MICCAI) 2019
- 批准号:
9471524 - 财政年份:2019
- 资助金额:
$ 11.9万 - 项目类别:
Assessing Large-scale Brain Connectivities in Mild Cognitive Impairment
评估轻度认知障碍患者的大规模大脑连接
- 批准号:
8501820 - 财政年份:2013
- 资助金额:
$ 11.9万 - 项目类别:
Assessing Large-scale Brain Connectivities in Mild Cognitive Impairment
评估轻度认知障碍患者的大规模大脑连接
- 批准号:
9282537 - 财政年份:2013
- 资助金额:
$ 11.9万 - 项目类别:
Assessing Large-scale Brain Connectivities in Mild Cognitive Impairment
评估轻度认知障碍患者的大规模大脑连接
- 批准号:
8874817 - 财政年份:2013
- 资助金额:
$ 11.9万 - 项目类别:
Assessing Large-scale Brain Connectivities in Mild Cognitive Impairment
评估轻度认知障碍患者的大规模大脑连接
- 批准号:
8723036 - 财政年份:2013
- 资助金额:
$ 11.9万 - 项目类别:
Computer Aided Diagnosis and Followup of Alzheimer's Disease
阿尔茨海默病的计算机辅助诊断和随访
- 批准号:
7691464 - 财政年份:2007
- 资助金额:
$ 11.9万 - 项目类别:
Computer Aided Diagnosis and Followup of Alzheimer's Disease
阿尔茨海默病的计算机辅助诊断和随访
- 批准号:
7320127 - 财政年份:2007
- 资助金额:
$ 11.9万 - 项目类别:
Computer Aided Diagnosis and Followup of Alzheimer's Disease
阿尔茨海默病的计算机辅助诊断和随访
- 批准号:
7656641 - 财政年份:2007
- 资助金额:
$ 11.9万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 11.9万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 11.9万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 11.9万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 11.9万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 11.9万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 11.9万 - 项目类别:
Research Grant