Innovative Supercomputing for Breakthrough Molecular Dynamics
创新超级计算突破分子动力学
基本信息
- 批准号:7945309
- 负责人:
- 金额:$ 134.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2012-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAlgorithmsArtsAwardBehaviorBindingBiochemical PhenomenaBiologicalBiomedical ResearchBiotechnologyCalendarCell Membrane ProteinsCellsChemicalsCommunitiesComputer softwareComputersDNADataData AnalysesData Storage and RetrievalDiffusionDiseaseDrug InteractionsEquilibriumGiftsGoalsGrantHealthHigh Performance ComputingInvestigationIon ChannelMaintenanceMembrane ProteinsMethodsMissionMolecularMolecular StructureNamesNational Center for Research ResourcesNucleic AcidsPoliciesProcessProductionProteinsReactionResearchResource SharingResourcesRunningScienceScientistServicesSignal TransductionSimulateSupercomputingSystemTechnologyTestingTimeTissuesTrainingUnited States National Institutes of Healthabstractingbasebiomedical resourcedesigndrug candidatedrug developmentinnovationinsightmillisecondmodels and simulationmolecular dynamicsmolecular sizenanosecondnew technologynovelopen sourceprotein functionprotein structureprototypesimulationsoftware developmentsupercomputer
项目摘要
DESCRIPTION (provided by applicant): A partnership between D.E. Shaw Research (DESRES) and the National Resource for Biomedical Supercomputing (NRBSC) at the Pittsburgh Supercomputing Center (PSC) will enable breakthrough advances in Molecular Dynamics (MD) research. DESRES has recently developed new supercomputing technology that can accelerate MD simulations by about 100-fold. For this project, DESRES has offered a gift of community access to one of their supercomputers (Anton) hosted at the NRBSC/PSC. This gift is truly unprecedented, and would allow the MD research community to investigate important outstanding questions on scales of biological time that up until now have been completely inaccessible. Many important biomolecular processes occur over times on the order of milliseconds. MD simulations provide insights into the behavior of proteins, cell membranes, RNA, and DNA at an atomic level of detail, but with discrete time steps on the order of femtoseconds (10-15 seconds), current simulations typically can reach no more than about 100 nanoseconds of biological time per day of wall-clock time for medium-size molecular systems. Thus, most existing MD simulations remain in the nanosecond range of simulated time, with only a few runs extending to a microsecond. In contrast, an Anton prototype is now able to run simulations of comparable molecular systems at rates about two orders of magnitude faster. Such dramatic acceleration could literally transform the way that molecular structure and function are studied. For the first time, scientists might visualize and predict critically important biochemical phenomena, including the structural changes that underlie protein function, and the interactions between two proteins or between a protein and a candidate drug molecule. At that level, MD simulations could begin to answer important open biomedical questions, contribute substantially to drug development, and provide direct inputs to simulations of cells and tissues run with Brownian Dynamics and related stochastic diffusion-reaction algorithms at even longer time-scales. In this highly innovative project, DESRES and the NRBSC will partner to make an Anton supercomputer available to the national research community. A national allocation mechanism will be implemented, and powerful new open-source data analysis methods will be developed as well. This project will enable breakthrough science, and may also usher in a new era of specialized computers developed for biomedical modeling and simulation, spanning molecular to cellular and tissue scales of space and time.
PUBLIC HEALTH RELEVANCE: New supercomputing technology, approximately one hundred times faster than pre-existing resources, will be made available to the national research community for the first time ever. This new technology will enable breakthrough advances in the modeling and simulation of molecular structure and function (Molecular Dynamics). Such dramatic acceleration may literally transform the way that scientists visualize and predict important chemical interactions that underlie health and disease, including how protein structure changes as the molecules carry out their functions, and how protein molecules bind to new candidate drug molecules. These advances will be made possible through a partnership between D.E. Shaw Research and the National Resource for Biomedical Supercomputing at the Pittsburgh Supercomputing Center.
描述(由申请人提供):D.E.Shaw Research(DESRES)和匹兹堡超级计算中心(PSC)的国家生物医学超级计算资源(NRBSC)之间的合作伙伴关系将使分子动力学(MD)研究取得突破性进展。DESRES最近开发了新的超级计算技术,可以将MD模拟速度提高约100倍。对于这个项目,DESRES提供了一份礼物,可以让社区访问他们在NRBSC/PSC托管的一台超级计算机(ANTON)。这份礼物真的是史无前例的,它将允许MD研究界在生物时间尺度上调查重要的悬而未决的问题,到目前为止,这些问题是完全无法获得的。许多重要的生物分子过程发生在毫秒量级的时间内。MD模拟提供了对蛋白质、细胞膜、RNA和DNA在原子细节水平上的行为的深入了解,但由于离散的时间步长在飞秒(10-15秒)的数量级,当前的模拟通常可以达到中等大小分子系统的挂钟时间的每天不超过大约100纳秒的生物时间。因此,大多数现有的MD模拟仍然停留在模拟时间的纳秒范围内,只有少数几次运行延伸到一微秒。相比之下,Anton的原型现在能够以大约两个数量级的速度运行可比的分子系统的模拟。这种戏剧性的加速可能会真正改变人们研究分子结构和功能的方式。科学家们可能会首次可视化并预测至关重要的生化现象,包括支撑蛋白质功能的结构变化,以及两种蛋白质之间或蛋白质与候选药物分子之间的相互作用。在这一水平上,MD模拟可以开始回答重要的公开生物医学问题,为药物开发做出重大贡献,并为在更长时间尺度上用布朗动力学和相关的随机扩散-反应算法运行的细胞和组织的模拟提供直接输入。在这个高度创新的项目中,DESRES和NRBSC将合作为国家研究界提供一台ANTON超级计算机。将实施国家分配机制,并将开发强大的新的开源数据分析方法。该项目将使科学取得突破性进展,并可能开启为生物医学建模和模拟开发的专用计算机的新时代,跨越分子、细胞和组织的空间和时间尺度。
与公共健康相关:新的超级计算技术将有史以来第一次提供给国家研究界,其速度大约是现有资源的100倍。这项新技术将使分子结构和功能的建模和模拟(分子动力学)取得突破性进展。这种戏剧性的加速可能会从字面上改变科学家对构成健康和疾病基础的重要化学相互作用的可视化和预测方式,包括蛋白质结构在分子执行其功能时如何变化,以及蛋白质分子如何与新的候选药物分子结合。这些进展将通过D.E.Shaw Research和匹兹堡超级计算中心的国家生物医学超级计算资源之间的合作实现。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Common functionally important motions of the nucleotide-binding domain of Hsp70.
Hsp70 核苷酸结合域的常见功能重要运动。
- DOI:10.1002/prot.24731
- 发表时间:2015
- 期刊:
- 影响因子:2.9
- 作者:Gołaś,EwaI;Czaplewski,Cezary;Scheraga,HaroldA;Liwo,Adam
- 通讯作者:Liwo,Adam
Learning generative models of molecular dynamics.
学习分子动力学的生成模型。
- DOI:10.1186/1471-2164-13-s1-s5
- 发表时间:2012
- 期刊:
- 影响因子:4.4
- 作者:Razavian,NargesSharif;Kamisetty,Hetunandan;Langmead,ChristopherJ
- 通讯作者:Langmead,ChristopherJ
Quantification of Compactness and Local Order in the Ensemble of the Intrinsically Disordered Protein FCP1.
内在无序蛋白质 FCP1 整体的紧凑性和局部有序性的量化。
- DOI:10.1021/acs.jpcb.6b06934
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Gibbs,EricB;Showalter,ScottA
- 通讯作者:Showalter,ScottA
Long-timescale dynamics and regulation of Sec-facilitated protein translocation.
- DOI:10.1016/j.celrep.2012.08.039
- 发表时间:2012-10-25
- 期刊:
- 影响因子:8.8
- 作者:Zhang B;Miller TF 3rd
- 通讯作者:Miller TF 3rd
Membrane-binding mechanism of a peripheral membrane protein through microsecond molecular dynamics simulations.
通过微秒分子动力学模拟外周膜蛋白的膜结合机制。
- DOI:10.1016/j.jmb.2012.08.015
- 发表时间:2012
- 期刊:
- 影响因子:5.6
- 作者:Rogaski,Brent;Klauda,JefferyB
- 通讯作者:Klauda,JefferyB
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Markus Dittrich其他文献
Markus Dittrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Markus Dittrich', 18)}}的其他基金
WORKSHOP: COMPUTATIONAL BIOPHYSICS USING NAMD AND VMD WORKSHOP DATES: 5/10-5/1
研讨会:使用 NAMD 和 VMD 进行计算生物物理学 研讨会日期:5/10-5/1
- 批准号:
8364397 - 财政年份:2011
- 资助金额:
$ 134.66万 - 项目类别:
GROUP FOR QUEUE PRIVS FOR ANTON AWARDEES
安东奖得主的 QUEUE PRIVS 小组
- 批准号:
8364381 - 财政年份:2011
- 资助金额:
$ 134.66万 - 项目类别:
GROUP FOR QUEUE PRIVS FOR ANTON GRANTS THAT HAVE CONSUMED THEIR ALLOCATIONS
已消耗其分配的 ANTON Grants 的 QUEUE PRIVS 组
- 批准号:
8364382 - 财政年份:2011
- 资助金额:
$ 134.66万 - 项目类别:
WORKSHOP: COMPUTATIONAL BIOPHYSICS USING NAMD AND VMD WORKSHOP DATES: 5/16-5/1
研讨会:使用 NAMD 和 VMD 进行计算生物物理学 研讨会日期:5/16-5/1
- 批准号:
8364401 - 财政年份:2011
- 资助金额:
$ 134.66万 - 项目类别:
Spatially realistic simulations of calcium dependent neurotransmitter release.
钙依赖性神经递质释放的空间真实模拟。
- 批准号:
7408354 - 财政年份:2008
- 资助金额:
$ 134.66万 - 项目类别:
Spatially realistic simulations of calcium dependent neurotransmitter release.
钙依赖性神经递质释放的空间真实模拟。
- 批准号:
7624288 - 财政年份:2008
- 资助金额:
$ 134.66万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 134.66万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 134.66万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 134.66万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 134.66万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 134.66万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 134.66万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 134.66万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 134.66万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 134.66万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 134.66万 - 项目类别:
Research Grant