Single Molecule Enzymology with Carbon Nanocircuits

碳纳米电路的单分子酶学

基本信息

  • 批准号:
    7893828
  • 负责人:
  • 金额:
    $ 23.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): A single errant cell can instigate cancer. To trigger this disease, mutant proteins either singly or in groups disrupt normal cellular function. What does one abnormal protein look like? How do the dynamics of the mutant compare to the kinetics of wild- type? In the studies proposed here, single molecules will be individually examined to characterize the basis for their contributions to molecular disease. The microscope used to examine the proteins one-at-a-time is a new type of nanocircuit reported by the Investigators recently in Science. The project leverages advances in microfabrication and the controlled synthesis of a single carbon nanotube contacting multiple electrodes. In published preliminary results, the Investigators have demonstrated conductance-controlled introduction of a single, carboxylate handle onto the sidewall of a nanotube connected into a nanocircuit. Through bioconjugation to the carboxylate handle, a single protein can be connected into the nanocircuit. Though standard EDC/NHS coupling chemistry provides stochastic conjugation to a random lysine, specific cysteine free thiols can be used to direct connections to particular sites within the protein. Using the electronic signature of the resultant nanocircuit, the single protein will be examined in real-time during protein unfolding, folding, binding, and, where applicable, catalysis. In Specific Aim 1, the current design for carbon nanocircuits will be extended for sensitive measurements with multiple proteins in parallel. Single molecule experiments will benefit from this parallel device architecture in two scenarios explored in the next specific aims. Simultaneous interrogation of different proteins or protein variants can elucidate functional differences under identical conditions, such as the abnormality of a mutant protein versus wild-type. In the next specific aim, the carbon nanocircuits from Specific Aim 1 are first applied to investigate well studied proteins, thus establishing a baseline for the approach. Single molecule enzymology will explore how electron transfer, conformational change, allostery, and other issues affect nanocircuit conductance. Specific Aim 3 extends device architectures from the first and what is learned from the second to investigate the molecular basis for caveolin control over cell signaling, implicated in cancer and other diseases. The proposed studies examine how caveolin inhibits different enzymes under a range of different conditions and mutational variants. In summary, given the importance of single molecule events to disease instigation and propagation, expanded methods for single molecule studies are needed. This application leverages recent advances from the Investigators laboratories to develop a generalizable approach for single molecule enzymology. Then, the mechanistic basis for caveolin mediation of cancer will be explored at the single molecule level. PUBLIC HEALTH RELEVANCE Individual proteins can hijack cells to cause cancer and other human diseases. This project develops new technologies for watching individual proteins. Specifically, how caveolin directs tumor formation will be investigated using a new type of nanometer-scale electronic circuit.
描述(由申请人提供):单个错误细胞可诱发癌症。为了引发这种疾病,突变蛋白质单独或成组地破坏正常的细胞功能。一种异常蛋白质是什么样子的?突变体的动力学与野生型的动力学相比如何?在这里提出的研究中,单个分子将被单独检查,以表征其对分子疾病的贡献的基础。用于一次一个地检查蛋白质的显微镜是一种新型的纳米电路,由研究人员最近在《科学》杂志上报道。该项目利用了微制造和控制合成接触多个电极的单个碳纳米管的进展。在发表的初步结果中,研究人员已经证明了在连接到纳米电路中的纳米管的侧壁上引入单个羧酸盐手柄的电导控制。通过与羧酸盐手柄的生物缀合,单个蛋白质可以连接到纳米电路中。尽管标准EDC/NHS偶联化学提供了与随机赖氨酸的随机缀合,但特定的无半胱氨酸巯基可用于直接连接至蛋白质内的特定位点。使用所产生的纳米电路的电子签名,将在蛋白质解折叠,折叠,结合和催化过程中实时检查单个蛋白质。在具体目标1中,目前的碳纳米电路设计将扩展到并行的多蛋白质敏感测量。单分子实验将受益于这种并行设备架构,在接下来的具体目标中探索了两种情况。同时询问不同的蛋白质或蛋白质变体可以阐明在相同条件下的功能差异,例如突变蛋白质与野生型的异常。在下一个具体目标中,来自具体目标1的碳纳米电路首先被应用于研究经过充分研究的蛋白质,从而为该方法建立了基线。单分子酶学将探讨如何电子转移,构象变化,变构,和其他问题影响纳米电路电导。Specific Aim 3扩展了第一种设备架构,并从第二种设备中学到了什么,以研究caveolin控制细胞信号传导的分子基础,涉及癌症和其他疾病。拟议的研究检查了窖蛋白如何在一系列不同条件和突变变体下抑制不同的酶。总之,鉴于单分子事件对疾病诱发和传播的重要性,需要扩展单分子研究的方法。该应用程序利用了研究人员实验室的最新进展,为单分子酶学开发了一种可推广的方法。然后,将在单分子水平上探索小窝蛋白介导癌症的机制基础。 公共卫生相关性个别蛋白质可以劫持细胞导致癌症和其他人类疾病。该项目开发了观察单个蛋白质的新技术。具体来说,小窝蛋白如何指导肿瘤形成将使用一种新型的纳米级电子电路进行研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory A. Weiss其他文献

Ligand design by a combinatorial approach based on modeling and experiment: application to HLA-DR4
  • DOI:
    10.1007/s10822-007-9119-x
  • 发表时间:
    2007-07-27
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Erik Evensen;Diane Joseph-McCarthy;Gregory A. Weiss;Stuart L. Schreiber;Martin Karplus
  • 通讯作者:
    Martin Karplus
UC Irvine UC Irvine Previously Published Works Title The scope of phage display for membrane proteins
加州大学欧文分校 加州大学欧文分校 先前发表的作品 标题 膜蛋白噬菌体展示的范围
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Vithayathil;R. Hooy;M. Cocco;Gregory A. Weiss
  • 通讯作者:
    Gregory A. Weiss
Catalyst-Free, Three-Component Synthesis of Amidinomaleimides
无催化剂的,丙二酰亚胺的三组分合成
  • DOI:
    10.1021/acs.joc.4c01485
  • 发表时间:
    2024-09-20
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Wyatt R. Swift-Ramirez;Lindsay A. Whalen;Lia K. Thompson;Kaylee E. Shoemaker;Aris V. Rubio;Gregory A. Weiss
  • 通讯作者:
    Gregory A. Weiss

Gregory A. Weiss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory A. Weiss', 18)}}的其他基金

Monitoring Recurrent Bladder Cancer with Electro-Phage Biosensors
使用噬菌体生物传感器监测复发性膀胱癌
  • 批准号:
    9148100
  • 财政年份:
    2016
  • 资助金额:
    $ 23.4万
  • 项目类别:
Membrane Protein Co- Crystallization with Highly Crystalline and Soluble Proteins
膜蛋白与高度结晶和可溶性蛋白质共结晶
  • 批准号:
    8373739
  • 财政年份:
    2012
  • 资助金额:
    $ 23.4万
  • 项目类别:
Membrane Protein Co- Crystallization with Highly Crystalline and Soluble Proteins
膜蛋白与高度结晶和可溶性蛋白质共结晶
  • 批准号:
    8843009
  • 财政年份:
    2012
  • 资助金额:
    $ 23.4万
  • 项目类别:
Membrane Protein Co- Crystallization with Highly Crystalline and Soluble Proteins
膜蛋白与高度结晶和可溶性蛋白质共结晶
  • 批准号:
    8653582
  • 财政年份:
    2012
  • 资助金额:
    $ 23.4万
  • 项目类别:
Membrane Protein Co- Crystallization with Highly Crystalline and Soluble Proteins
膜蛋白与高度结晶和可溶性蛋白质共结晶
  • 批准号:
    8536875
  • 财政年份:
    2012
  • 资助金额:
    $ 23.4万
  • 项目类别:
Purchase of a MALDI-TOF-TOF Mass Spectrometer
购买 MALDI-TOF-TOF 质谱仪
  • 批准号:
    7595706
  • 财政年份:
    2009
  • 资助金额:
    $ 23.4万
  • 项目类别:
Single Molecule Enzymology with Carbon Nanocircuits
碳纳米电路的单分子酶学
  • 批准号:
    8305167
  • 财政年份:
    2008
  • 资助金额:
    $ 23.4万
  • 项目类别:
Single Molecule Enzymology with Carbon Nanocircuits
碳纳米电路的单分子酶学
  • 批准号:
    7664274
  • 财政年份:
    2008
  • 资助金额:
    $ 23.4万
  • 项目类别:
Single Molecule Enzymology with Carbon Nanocircuits
碳纳米电路的单分子酶学
  • 批准号:
    8115098
  • 财政年份:
    2008
  • 资助金额:
    $ 23.4万
  • 项目类别:
Engineering Soluble Aggregation-Prone and Membrane-Bound Proteins
工程化可溶性易聚集和膜结合的蛋白质
  • 批准号:
    7259408
  • 财政年份:
    2006
  • 资助金额:
    $ 23.4万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
  • 批准号:
    2339197
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
  • 批准号:
    2409279
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
  • 批准号:
    2419386
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
  • 批准号:
    2348571
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
  • 批准号:
    2904511
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
  • 批准号:
    BB/X014657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Research Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
  • 批准号:
    EP/Y028120/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Fellowship
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
  • 批准号:
    2344424
  • 财政年份:
    2024
  • 资助金额:
    $ 23.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了