A Drosophila geneome-wide protein interaction map

果蝇全基因组蛋白质相互作用图

基本信息

  • 批准号:
    7924498
  • 负责人:
  • 金额:
    $ 12.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-19 至 2011-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Networks of interacting proteins mediate a diverse range of biological processes. An essential step toward developing a more thorough understanding of biological systems is to catalogue all of the binary interactions that comprise these protein networks for each genome. The long-term objective of this project is to construct a comprehensive high-quality protein interaction map for the genetically tractable model organism, Drosophila melanogaster. A proven technology for detecting biologically informative protein interactions is the yeast two-hybrid system. In a completed phase of this project, yeast two-hybrid clone arrays were constructed for over 86% of the 14,000 predicted Drosophila genes. Initial screening of these arrays detected thousands of protein interactions, which are proving invaluable for understanding protein and pathway function. Analyses have also revealed that only a small fraction of the interactions detectable with this technology have been identified thus far. The first aim of this project is to increase the coverage of protein interaction data by continued two-hybrid screening, particularly with the proteins missing from current interaction maps; this will at least double the existing number of interactions. In the second aim, two different assay systems will be used to verify all detected interactions. Using these results and other criteria, each interaction will be assigned a confidence score indicating the probability that it plays a functional role in vivo. In the third aim, co-affinity purifications will be performed to further validate the interaction data. In Aim 4, binary interactions will be directly tested for groups of proteins suspected of being functionally related or between proteins computationally predicted to interact. Compared to random screening, this approach is likely to produce more complete and accurate interaction data for these proteins, and moreover, should provide data to help validate and further enhance prediction algorithms. In the final aim, newly predicted genes missing from the existing two-hybrid arrays will be cloned and incorporated into the screening process. All data from this project will be publicly available in standardized formats via at least two independent web-based databases. Combined, the data from this project will provide a foundation for understanding the functions of conserved protein networks and for modeling complex biological processes and diseases.
描述(由申请人提供):相互作用的蛋白质网络介导多种生物过程。对生物系统进行更透彻的理解的一个重要步骤是对每个基因组的蛋白质网络中的所有二元相互作用进行分类。本项目的长期目标是构建一个全面的高质量的蛋白质相互作用图谱的遗传易处理的模式生物,果蝇。酵母双杂交系统是检测生物信息蛋白质相互作用的成熟技术。在该项目的完成阶段,酵母双杂交克隆阵列构建了超过86%的14,000个预测的果蝇基因。这些阵列的初步筛选检测到数千种蛋白质相互作用,这对于理解蛋白质和途径功能是非常宝贵的。分析还表明,迄今为止,只有一小部分可利用这项技术检测到的相互作用得到了确认。该项目的第一个目标是通过持续的双杂交筛选来增加蛋白质相互作用数据的覆盖范围,特别是对于当前相互作用图谱中缺失的蛋白质;这将使现有的相互作用数量至少增加一倍。在第二个目标中,将使用两种不同的测定系统来验证所有检测到的相互作用。使用这些结果和其他标准,将为每种相互作用分配一个置信度评分,表明其在体内发挥功能作用的概率。在第三个目标中,将进行共亲和纯化以进一步验证相互作用数据。在目标4中,二元相互作用将直接测试怀疑功能相关的蛋白质组或计算预测相互作用的蛋白质之间的相互作用。与随机筛选相比,这种方法可能会为这些蛋白质产生更完整和准确的相互作用数据,而且,应该提供数据来帮助验证和进一步增强预测算法。在最终的目标中,将克隆现有双杂交阵列中缺失的新预测基因,并将其纳入筛选过程。该项目的所有数据将通过至少两个独立的网络数据库以标准化格式公开提供。结合起来,该项目的数据将为理解保守蛋白质网络的功能和模拟复杂的生物过程和疾病提供基础。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A strategy for constructing large protein interaction maps using the yeast two-hybrid system: regulated expression arrays and two-phase mating.
使用酵母双杂交系统构建大型蛋白质相互作用图谱的策略:调节表达阵列和两相交配。
  • DOI:
    10.1101/gr.1134603
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhong,Jinhui;Zhang,Huamei;Stanyon,ClementA;Tromp,Gerard;FinleyJr,RussellL
  • 通讯作者:
    FinleyJr,RussellL
Simultaneous cloning of open reading frames into several different expression vectors.
将开放阅读框同时克隆到几个不同的表达载体中。
  • DOI:
    10.2144/03353st05
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Stanyon,ClementA;Limjindaporn,Thawornchai;FinleyJr,RussellL
  • 通讯作者:
    FinleyJr,RussellL
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RUSSELL L FINLEY其他文献

RUSSELL L FINLEY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RUSSELL L FINLEY', 18)}}的其他基金

PROTEIN INTERACTIONS: PROTEIN MICROARRAYS
蛋白质相互作用:蛋白质微阵列
  • 批准号:
    7602885
  • 财政年份:
    2007
  • 资助金额:
    $ 12.31万
  • 项目类别:
PROTEIN INTERACTIONS: YEAST TWO HYBRID
蛋白质相互作用:酵母二杂交体
  • 批准号:
    7602883
  • 财政年份:
    2007
  • 资助金额:
    $ 12.31万
  • 项目类别:
PROTEIN INTERACTIONS: HIGH THROUGHPUT SUBCLONING
蛋白质相互作用:高通量亚克隆
  • 批准号:
    7602884
  • 财政年份:
    2007
  • 资助金额:
    $ 12.31万
  • 项目类别:
PROTEIN INTERACTIONS: YEAST TWO HYBRID
蛋白质相互作用:酵母二杂交体
  • 批准号:
    7359123
  • 财政年份:
    2006
  • 资助金额:
    $ 12.31万
  • 项目类别:
PROTEIN INTERACTIONS: HIGH THROUGHPUT SUBCLONING
蛋白质相互作用:高通量亚克隆
  • 批准号:
    7359124
  • 财政年份:
    2006
  • 资助金额:
    $ 12.31万
  • 项目类别:
PROTEIN INTERACTIONS: PROTEIN MICROARRAYS
蛋白质相互作用:蛋白质微阵列
  • 批准号:
    7359125
  • 财政年份:
    2006
  • 资助金额:
    $ 12.31万
  • 项目类别:
PROTEIN INTERACTIONS: HIGH THROUGHPUT SUBCLONING
蛋白质相互作用:高通量亚克隆
  • 批准号:
    7183188
  • 财政年份:
    2005
  • 资助金额:
    $ 12.31万
  • 项目类别:
PROTEIN INTERACTIONS: PROTEIN MICROARRAYS
蛋白质相互作用:蛋白质微阵列
  • 批准号:
    7183189
  • 财政年份:
    2005
  • 资助金额:
    $ 12.31万
  • 项目类别:
PROTEIN INTERACTIONS: YEAST TWO HYBRID
蛋白质相互作用:酵母二杂交体
  • 批准号:
    7183187
  • 财政年份:
    2005
  • 资助金额:
    $ 12.31万
  • 项目类别:
PROTEIN INTERACTIONS: PROTEIN MICROARRAYS
蛋白质相互作用:蛋白质微阵列
  • 批准号:
    6979140
  • 财政年份:
    2004
  • 资助金额:
    $ 12.31万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.31万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了