Integrated Resource for Protein Recognition Studies
蛋白质识别研究综合资源
基本信息
- 批准号:7906600
- 负责人:
- 金额:$ 14.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsBenchmarkingClassificationCommunitiesComplexComputational TechniqueComputer softwareDataData SetDatabasesDevelopmentDockingDrug DesignEnvironmentGenomeGoalsIndividualKineticsLifeMarshalModelingMolecularMolecular StructureOnline SystemsProceduresProcessPropertyProtein DatabasesProteinsResource DevelopmentResourcesRoleSimulateStructural ModelsStructureSystemTechniquesTestingUpdatebasegenome wide association studygenome-wideimprovedinsightknowledge basemodel developmentprotein complexprotein structurerapid growthstructural biologystructural genomicsthree dimensional structuretool
项目摘要
Description (provided by applicant): The protein-protein docking problem is one of the focal points of activity in computational structural biology. The 3D structure of a protein-protein complex, generally, is more difficult to determine experimentally than the structure of an individual protein. Adequate computational techniques to model protein interactions are important because of the growing number of known protein 3D structures, particularly in the context of structural genomics. The project will improve our understanding of fundamental properties of protein interaction and will facilitate development of better tools for prediction of protein complexes. The Specific Aims of the project are: (1) Advanced docking algorithm, (2) Resource databases, and (3) Integrated web-based environment. The long-term goals are: (a) development of an automated tool for a reliable modeling of protein interactions, which will account for dynamic changes in the molecular structures and kinetics of protein association and (b) utilization of this tool to understand principles of protein interaction. The ultimate goal is to recreate the network of protein interactions in genomes and understand the structure-base mechanisms of these interactions. The systematic, detailed description of these interactions will provide insights into the basic principles of life processes at the molecular level. The focus of the proposal is an integrated system of resources for studying protein-protein 3D interactions. An existing docking procedure will be developed further to make it more adequate to the challenges of structural modeling of protein-protein complexes. The development will make use of the rapidly growing body of experimentally determined structures of protein-protein complexes. The procedure will be used to generate docking datasets for the development of modeling capabilities. The core dataset consists of regularly updated and annotated co-crystallized protein-protein structures. The database of experimentally determined and simulated unbound complexes will be further expanded upon the core dataset. It will serve as a comprehensive benchmark set for the development of docking techniques. The database of protein-protein models will provide a unique expansion of the core dataset for development of docking capabilities in protein modeling, including genome-wide studies. The database of docking decoys will provide the community-wide testing ground for new scoring functions.
描述(由申请人提供):蛋白质-蛋白质对接问题是计算结构生物学活动的焦点之一。蛋白质-蛋白质复合物的3D结构通常比单个蛋白质的结构更难通过实验确定。适当的计算技术来模拟蛋白质的相互作用是很重要的,因为越来越多的已知蛋白质的三维结构,特别是在结构基因组学的背景下。该项目将提高我们对蛋白质相互作用的基本性质的理解,并将促进开发更好的预测蛋白质复合物的工具。该项目的具体目标是:(1)先进的对接算法,(2)资源数据库,(3)集成的基于Web的环境。长期目标是:(a)开发一种自动化工具,用于蛋白质相互作用的可靠建模,这将解释蛋白质缔合的分子结构和动力学的动态变化,以及(B)利用该工具来理解蛋白质相互作用的原理。最终目标是重建基因组中蛋白质相互作用的网络,并了解这些相互作用的结构基础机制。对这些相互作用的系统而详细的描述将提供对分子水平上生命过程的基本原理的深入了解。该提案的重点是研究蛋白质-蛋白质3D相互作用的综合资源系统。现有的对接程序将进一步发展,使其更适合蛋白质-蛋白质复合物的结构建模的挑战。该开发将利用快速增长的实验确定的蛋白质-蛋白质复合物结构体。该程序将用于生成对接数据集,以开发建模能力。核心数据集由定期更新和注释的共结晶蛋白质-蛋白质结构组成。实验测定和模拟未结合复合物的数据库将在核心数据集上进一步扩展。它将成为发展对接技术的一套全面基准。蛋白质-蛋白质模型数据库将为开发蛋白质建模(包括全基因组研究)中的对接能力提供核心数据集的独特扩展。对接诱饵数据库将为新的评分功能提供全社区的测试场。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ILYA VAKSER其他文献
ILYA VAKSER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ILYA VAKSER', 18)}}的其他基金
Integrated Resource for Protein Recognition Studies
蛋白质识别研究综合资源
- 批准号:
7367832 - 财政年份:2005
- 资助金额:
$ 14.88万 - 项目类别:
Integrated Resource for Protein Recognition Studies
蛋白质识别研究综合资源
- 批准号:
8215760 - 财政年份:2005
- 资助金额:
$ 14.88万 - 项目类别:
Integrated Resource for Protein Recognition Studies
蛋白质识别研究综合资源
- 批准号:
7752562 - 财政年份:2005
- 资助金额:
$ 14.88万 - 项目类别:
Integrated Resource for Protein Recognition Studies
蛋白质识别研究综合资源
- 批准号:
7194314 - 财政年份:2005
- 资助金额:
$ 14.88万 - 项目类别:
Integrated Resource for Protein Recognition Studies
蛋白质识别研究综合资源
- 批准号:
7019180 - 财政年份:2005
- 资助金额:
$ 14.88万 - 项目类别:
Integrated Resource for Protein Recognition Studies
蛋白质识别研究综合资源
- 批准号:
8735154 - 财政年份:2005
- 资助金额:
$ 14.88万 - 项目类别:
Integrated Resource for Protein Recognition Studies
蛋白质识别研究综合资源
- 批准号:
7527819 - 财政年份:2005
- 资助金额:
$ 14.88万 - 项目类别:
Integrated Resource for Protein Recognition Studies
蛋白质识别研究综合资源
- 批准号:
10700017 - 财政年份:2005
- 资助金额:
$ 14.88万 - 项目类别:
Integrated Resource for Protein Recognition Studies
蛋白质识别研究综合资源
- 批准号:
9130187 - 财政年份:2005
- 资助金额:
$ 14.88万 - 项目类别:
Integrated Resource for Protein Recognition Studies
蛋白质识别研究综合资源
- 批准号:
8035403 - 财政年份:2005
- 资助金额:
$ 14.88万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 14.88万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 14.88万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 14.88万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 14.88万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 14.88万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 14.88万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 14.88万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 14.88万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 14.88万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 14.88万 - 项目类别:
Continuing Grant