Concept-Level Methods for Comparative Effectiveness Research

比较有效性研究的概念级方法

基本信息

项目摘要

DESCRIPTION (provided by applicant): Challenge Area and Specific Challenge Topic: This application addresses broad Challenge Area (10) Information Technology for Processing Health Care Data and specific Challenge Topic, 10-RR-101*: Information Technology Demonstration Projects Facilitating Secondary Use of Healthcare Data for Research. Clinical Data Warehouses (CDWs) archive data from electronic medical records (EMRs). Unlike EMRs, which are designed to store and retrieve data by patient (e.g., all data about John Smith), CDWs support queries across patients (e.g., percentage of patients on vs. off aspirin who develop unstable angina). CDWs are critical components of an infrastructure that enables reuse of healthcare data for research. As such, they are important enablers of comparative effectiveness research (CER). However, simply transferring healthcare data from EMRs to a CDW is not sufficient. Healthcare data, unlike clinical trial data, are not collected with a research question in mind. Thus, they may be poorly structured (e.g., free-text list of diagnoses, not a list of ICD9 terms) and contain protected health information (e.g., names, addresses) or identifying phrases such as "senator with lymphoma." Our unifying hypothesis is that concept-level approaches can be applied to CDWs to bring meaning to vast amounts of healthcare data while protecting subject privacy. To test this hypothesis, we will: 1) adapt and evaluate our novel indexing system (based on graph analysis, a modification of Google's PageRank algorithm) to improve concept extraction from clinical text, 2) evaluate the privacy afforded to "subjects" by working with clinical text at the concept level and 3) adapt and evaluate existing visualization techniques to visualize relationships among concept-level healthcare data, thereby facilitating exploratory data analysis by biomedical researchers. Although these aims build on each other, every individual aim can succeed even if the others fail. At the conclusion of this project we will have developed and evaluated novel concept-extraction algorithms for CER using healthcare data. We will have determined the privacy implications of working with concept-level data and developed interactive visualizations for concept-level browsing of large healthcare data sets. Many organizations are building clinical data warehouses to enable comparative effectiveness research. However, simply loading data from electronic medical records into clinical data warehouses is not enough. To enable reuse of healthcare data for research, we will develop new ways to access and visualize clinical data within data warehouses. Specifically, we will develop new ways to extract concepts from unstructured text, visualize large data sets to quickly see patterns and determine the privacy implications of our methods.
描述(由申请人提供):挑战领域和特定挑战主题:本申请涉及广泛的挑战领域(10)处理医疗保健数据的信息技术和特定挑战主题,10-RR-101*:促进医疗保健数据二次使用的信息技术示范项目。临床数据仓库(CDW)将电子病历(EMR)中的数据存档。与设计用于按患者存储和检索数据的EMR不同(例如,关于JohnSmith的所有数据),CDW支持跨患者的查询(例如,发生不稳定型心绞痛的服用阿司匹林患者与不服用阿司匹林患者的百分比)。CDW是基础设施的关键组件,可以重用医疗保健数据进行研究。因此,它们是比较有效性研究(CER)的重要推动者。然而,简单地将医疗保健数据从EMR传输到CDW是不够的。与临床试验数据不同,医疗保健数据的收集并没有考虑到研究问题。因此,它们可能结构不良(例如,诊断的自由文本列表,而不是ICD 9术语列表),并包含受保护的健康信息(例如,姓名、地址)或诸如“患有淋巴瘤的参议员”之类的识别短语。“我们的统一假设是,概念级方法可以应用于CDW,为大量的医疗保健数据带来意义,同时保护受试者隐私。为了验证这个假设,我们将:1)调整和评估我们的新索引系统(基于图分析,Google的PageRank算法的修改)以改进从临床文本的概念提取,2)通过在概念级处理临床文本来评估提供给“受试者”的隐私,以及3)适应和评估现有的可视化技术以可视化概念级医疗保健数据之间的关系,从而便于生物医学研究人员进行探索性数据分析。虽然这些目标是相互建立的,但即使其他目标失败,每个目标也可以成功。在这个项目的结论,我们将开发和评估新的概念提取算法CER使用医疗保健数据。我们将确定使用概念级数据的隐私影响,并为大型医疗保健数据集的概念级浏览开发交互式可视化。许多组织正在建立临床数据仓库,以进行比较有效性研究。然而,仅仅将电子病历中的数据加载到临床数据仓库中是不够的。为了使医疗数据能够重新用于研究,我们将开发新的方法来访问和可视化数据仓库中的临床数据。具体来说,我们将开发新的方法来从非结构化文本中提取概念,可视化大型数据集以快速查看模式并确定我们方法的隐私影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elmer V. Bernstam其他文献

Precision phenotyping for curating research cohorts of patients with unexplained post-acute sequelae of COVID-19
用于整理新冠病毒感染后出现不明原因急性后后遗症患者研究队列的精准表型分析
  • DOI:
    10.1016/j.medj.2024.10.009
  • 发表时间:
    2025-03-14
  • 期刊:
  • 影响因子:
    11.800
  • 作者:
    Alaleh Azhir;Jonas Hügel;Jiazi Tian;Jingya Cheng;Ingrid V. Bassett;Douglas S. Bell;Elmer V. Bernstam;Maha R. Farhat;Darren W. Henderson;Emily S. Lau;Michele Morris;Yevgeniy R. Semenov;Virginia A. Triant;Shyam Visweswaran;Zachary H. Strasser;Jeffrey G. Klann;Shawn N. Murphy;Hossein Estiri
  • 通讯作者:
    Hossein Estiri

Elmer V. Bernstam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elmer V. Bernstam', 18)}}的其他基金

Informatics to enable routine personalized cancer therapy
信息学使常规个性化癌症治疗成为可能
  • 批准号:
    8741711
  • 财政年份:
    2013
  • 资助金额:
    $ 48.04万
  • 项目类别:
Informatics to enable routine personalized cancer therapy
信息学使常规个性化癌症治疗成为可能
  • 批准号:
    8607017
  • 财政年份:
    2013
  • 资助金额:
    $ 48.04万
  • 项目类别:
Concept-Level Methods for Comparative Effectiveness Research
比较有效性研究的概念级方法
  • 批准号:
    7815047
  • 财政年份:
    2009
  • 资助金额:
    $ 48.04万
  • 项目类别:
Using citation data to improve retrieval from MEDLINE
使用引文数据改进 MEDLINE 检索
  • 批准号:
    6765409
  • 财政年份:
    2004
  • 资助金额:
    $ 48.04万
  • 项目类别:
Using citation data to improve retrieval from MEDLINE
使用引文数据改进 MEDLINE 检索
  • 批准号:
    7080398
  • 财政年份:
    2004
  • 资助金额:
    $ 48.04万
  • 项目类别:
Using citation data to improve retrieval from MEDLINE
使用引文数据改进 MEDLINE 检索
  • 批准号:
    6895765
  • 财政年份:
    2004
  • 资助金额:
    $ 48.04万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 48.04万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 48.04万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 48.04万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 48.04万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 48.04万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 48.04万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 48.04万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 48.04万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 48.04万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.04万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了