Novel Acquisition Methods for Diffusion MRI

扩散 MRI 的新采集方法

基本信息

  • 批准号:
    7837741
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

MOTIVIATION - One of MRI’s inherent biophysical contrast parameters is proton self-diffusion, which can be measured by diffusion-weighted imaging (DWI). A variant, Diffusion Tensor Imaging (DTI), is an MRI method for noninvasive quantitative mapping of anisotropic water diffusion, thereby allowing the non-invasive investigation of white matter (WM) microstructure which might aid in the diagnosis and understanding the pathophysiology of white matter abnormalities and delayed maturation. DTI has been also used extensively for non-invasive tracing of WM pathways in tumor patients and in patients harboring non-focal disease. Unfortunately, DTI still suffers not only from physiologic motion but also from profound technical difficulties that increase with higher magnetic fields; higher magnetic fields on the other hand would offer substantially more signal-to-noise ratio (SNR). One of the major benefactors from motion-compensated DTI at high field would be children because of their smaller head sizes and the higher likelihood of motion. AIMS - The overarching goal of this 2-year research effort is to improve diffusion-weighted multi-shot spiral imaging to create significant improvements in 2D and 3D diffusion tensor imaging. Specifically, the project focuses on improvements for spiral acquisition methods and corresponding reconstruction techniques that reduce distortions, improve immunity to motion, diminish RF deposition, and provide better spatial resolution. Special emphasis is also given on improving image quality of this sequence for pediatric imaging. The specific aims are: (Specific Aim #1) to develop and optimize acquisition and reconstruction methods for real-time spiral diffusion-weighted MRI for 2D and 3D acquisitions; (Specific Aim #2) to define optimal DTI scan parameters for 2D and 3D for adults and children at 3T and 7T for different clinical applications and variants of motion. METHODS - Navigator, (prospective and retrospective) motion and off-resonance correction schemes in concert with augmented parallel imaging reconstruction algorithms will be developed and optimized both in simulations and phantom studies. Healthy children (n=62) and adults (n=30) will be enrolled for extensive testing. Optimal DTI scan parameters for a battery of different clinical questions and variants of motion will be determined by experienced neuroimagers and neuroradiologists. The raw k-space data and high-resolution diffusion tensor data will be added to a registry and can be made available to the public to improve image reconstruction algorithms (e.g. off-resonance correction, parallel imaging, diffusion phase navigation, gridding reconstruction), tensor processing (e.g. studying partial volume effects, crossing fibers, complex tract tracing algorithms) and to provide a normative database for adults and children that can be used in future trials. SIGNIFICANCE –We believe that upon successful completion of this project significant improvements in DTI can be achieved that will improve morphometric assessment and tract tracing in patients harboring various pathologic conditions. Abnormalities in WM and tract projections could provide crucial insights in the pathophysiology of several diseases that attack white matter, and further the understanding of specific neurodevelopmental trajectories of children with and without WM disorders.
动机:MRI固有的生物物理对比参数之一是质子自扩散,这可以通过扩散加权成像(DWI)来测量。弥散张量成像(DTI)是一种非侵入性定量绘制各向异性水扩散的MRI方法,因此可以对白质(WM)微观结构进行非侵入性研究,这可能有助于诊断和理解白质异常和延迟成熟的病理生理学。DTI也广泛用于肿瘤患者和非局灶性疾病患者的WM通路的无创追踪。不幸的是,DTI不仅受到生理运动的影响,而且还面临着随着磁场的增加而增加的深刻的技术困难;另一方面,更高的磁场会提供更高的信噪比(SNR)。运动补偿DTI的主要受益者之一是儿童,因为他们的头部尺寸较小,运动的可能性更高。AIMS -这项为期2年的研究工作的总体目标是改进扩散加权多镜头螺旋成像,以显著改进2D和3D扩散张量成像。具体而言,该项目侧重于改进螺旋采集方法和相应的重建技术,以减少扭曲,提高运动免疫力,减少射频沉积,并提供更好的空间分辨率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ROLAND BAMMER其他文献

ROLAND BAMMER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ROLAND BAMMER', 18)}}的其他基金

Cardiac Diffusion Imaging for Heart Transplant Surveillance
用于心脏移植监测的心脏弥散成像
  • 批准号:
    8650639
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
A Prototype Wireless Digital MR Spectrometer on a Single Integrated Circuit
单个集成电路上的无线数字磁共振波谱仪原型
  • 批准号:
    8710219
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
A Prototype Wireless Digital MR Spectrometer on a Single Integrated Circuit
单个集成电路上的原型无线数字磁共振波谱仪
  • 批准号:
    8597817
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
Real-Time MRI Motion Correction System
实时 MRI 运动校正系统
  • 批准号:
    7987431
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
DIFFUSION IMAGING ?MR NEUROIMAGING
弥散成像?MR 神经成像
  • 批准号:
    8169831
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
Real-Time MRI Motion Correction System
实时 MRI 运动校正系统
  • 批准号:
    8141396
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
Real-Time MRI Motion Correction System
实时 MRI 运动校正系统
  • 批准号:
    8323818
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
Novel Acquisition Methods for Diffusion MRI
扩散 MRI 的新采集方法
  • 批准号:
    7379478
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
DIFFUSION IMAGING ?MR NEUROIMAGING
弥散成像?MR 神经成像
  • 批准号:
    7955357
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
DIFFUSION IMAGING ?MR NEUROIMAGING
弥散成像?MR 神经成像
  • 批准号:
    7722873
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了