A Computational Approach To Closing The Gap Between Tissue Structure And Function
缩小组织结构和功能之间差距的计算方法
基本信息
- 批准号:7846877
- 负责人:
- 金额:$ 44.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-15 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsBackBasic ScienceBiologicalBiological ProcessBreastCatalogingCatalogsCell DensityCellsCharacteristicsClinicalComplexDataDescriptorDetectionDiagnosisDiseaseEnvironmentExtracellular MatrixGenomeGoalsGoldGraphHistocompatibility TestingHumanLearningLinkMethodsMiningModelingMorphologyOrganismPropertyScientistStructureStructure-Activity RelationshipSystemTechniquesTestingTissue ModelTissuesWorkbasebiological systemsbonebrain tissuecancer diagnosiscell behaviorclinically relevantcytokinedesigndisease diagnosisfunctional statusimprovednovel strategiespublic health relevanceresponsetheoriestool
项目摘要
DESCRIPTION (provided by applicant): The structure/function relationship is fundamental to our understanding of biological systems at all levels, and drives most, if not all, techniques for detecting, diagnosing, and treating disease. The concept is powerful enough to have inspired a 200+ year-long effort to describe the components of our biological universe in ever finer detail, beginning with the Linnean taxonomic system of cataloging organisms based on their structural similarities, and culminating with microscale descriptions such as the complete genomes of several organisms, including humans. However, having reduced the complex biological universe to a myriad of minute parts, we encounter new forms of complexity: data overload and curse of dimensionality. Simply put, we've taken our biological machine apart but can't put it back together again- our ability to accumulate reductionist data has outstripped our ability to understand it. Thus, we encounter a gap in the structure/function relationship: having accumulated an extraordinary amount of detailed information about biological structures, we can't assemble it in a way that explains the correspondingly complex biological functions these structures perform. We propose a novel approach to this problem based on representing tissues using graph theory and learning its structural properties by analyzing the underlying graphs. Our long-range objective is to close this gap by establishing quantitative features that link tissue structure to biological function. Our immediate goals for this project are to define three quantitatively different functional states (healthy, damaged, diseased) of three morphologically distinct tissues (brain, breast, bone) based on their distinguishing morphological characteristics, then test three hypotheses that propose to link these quantitative features to specific biological activities in these tissues Successful completion of this project will provide a new and powerful tool for quantitatively linking telltale structural properties of tissues (e.g., cellular distribution, morphology, contact) with specific disease states and fundamental behaviors of the cells comprising these tissues. This will be useful both to scientists conducting basic research to uncover the guiding principles of tissue structure and function, and to clinicians seeking to quickly and accurately detect and diagnose diseases that involve alterations in tissue structure. PUBLIC HEALTH RELEVANCE: Successful completion of this project will provide a new and powerful tool for quantitatively linking telltale structural properties of tissues (e.g., cellular distribution, morphology, contact) with specific disease states and fundamental behaviors of the cells comprising these tissues. This will be useful both to scientists conducting basic research to uncover the guiding principles of tissue structure and function, and to clinicians seeking to quickly and accurately detect and diagnose diseases that involve alterations in tissue structure.
描述(由申请人提供):结构/功能关系是我们在所有层次上理解生物系统的基础,并推动大多数(如果不是全部)检测、诊断和治疗疾病的技术。这个概念足够强大,激发了长达200多年的努力,以更详细地描述我们生物宇宙的组成部分,从Linnean基于其结构相似性对有机体进行分类的分类系统开始,最后是微尺度的描述,如包括人类在内的几个有机体的完整基因组。然而,在将复杂的生物宇宙简化为无数微小的部分后,我们遇到了新的复杂性形式:数据过载和维度诅咒。简单地说,我们已经拆开了我们的生物机器,但无法将其重新组装起来--我们积累简化论数据的能力已经超过了我们理解它的能力。因此,我们在结构/功能关系上遇到了一个缺口:积累了大量关于生物结构的详细信息后,我们无法用一种方式来解释这些结构执行的相应复杂的生物功能。我们提出了一种新的方法来解决这一问题,该方法使用图论来表示组织,并通过分析潜在的图来学习其结构属性。我们的长期目标是通过建立将组织结构与生物功能联系起来的定量特征来缩小这一差距。我们这个项目的近期目标是根据三种不同形态的组织(脑、乳房、骨骼)的不同形态特征,定义三种不同的定量功能状态(健康、受损、患病),然后测试三个假设,这些假设提出将这些定量特征与这些组织中的特定生物活动联系起来。该项目的成功完成将提供一个新的强大的工具,用于将组织的结构属性(例如,细胞分布、形态、接触)与组成这些组织的细胞的特定疾病状态和基本行为进行定量联系。这对进行基础研究以揭示组织结构和功能的指导原则的科学家以及寻求快速准确地检测和诊断涉及组织结构变化的疾病的临床医生都是有用的。与公共卫生的相关性:该项目的成功完成将提供一种新的、强有力的工具,将组织的结构特征(如细胞分布、形态、接触)与构成这些组织的细胞的具体疾病状态和基本行为联系起来。这对进行基础研究以揭示组织结构和功能的指导原则的科学家以及寻求快速准确地检测和诊断涉及组织结构变化的疾病的临床医生都是有用的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BULENT YENER其他文献
BULENT YENER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BULENT YENER', 18)}}的其他基金
A Computational Approach To Closing The Gap Between Tissue Structure And Function
缩小组织结构和功能之间差距的计算方法
- 批准号:
7526747 - 财政年份:2008
- 资助金额:
$ 44.47万 - 项目类别:
A Computational Approach To Closing The Gap Between Tissue Structure And Function
缩小组织结构和功能之间差距的计算方法
- 批准号:
7905431 - 财政年份:2008
- 资助金额:
$ 44.47万 - 项目类别:
A Computational Approach To Closing The Gap Between Tissue Structure And Function
缩小组织结构和功能之间差距的计算方法
- 批准号:
8072085 - 财政年份:2008
- 资助金额:
$ 44.47万 - 项目类别:
A Computational Approach To Closing The Gap Between Tissue Structure And Function
缩小组织结构和功能之间差距的计算方法
- 批准号:
7657471 - 财政年份:2008
- 资助金额:
$ 44.47万 - 项目类别:
相似国自然基金
基于Teach-back药学科普模式的慢阻肺患者吸入用药依从性及疗效研究
- 批准号:2024KP61
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Quench-Back保护的超导螺线管磁体失超过程数值模拟研究
- 批准号:51307073
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 44.47万 - 项目类别:
Continuing Grant
One-step reconstruction of plastic waste back to its constituent monomers (ONESTEP)
将塑料废物一步重建回其组成单体(ONESTEP)
- 批准号:
EP/Y003934/1 - 财政年份:2024
- 资助金额:
$ 44.47万 - 项目类别:
Research Grant
On the origin of very massive back holes
关于巨大背洞的起源
- 批准号:
DP240101786 - 财政年份:2024
- 资助金额:
$ 44.47万 - 项目类别:
Discovery Projects
Back to our roots: Re-activating Indigenous biocultural conservation
回到我们的根源:重新激活本土生物文化保护
- 批准号:
FT230100595 - 财政年份:2024
- 资助金额:
$ 44.47万 - 项目类别:
ARC Future Fellowships
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
- 批准号:
2328741 - 财政年份:2023
- 资助金额:
$ 44.47万 - 项目类别:
Continuing Grant
Collaborative Research: NSFGEO-NERC: MEZCAL: Methods for Extending the horiZontal Coverage of the Amoc Latitudinally and back in time (MEZCAL)
合作研究:NSFGEO-NERC:MEZCAL:扩展 Amoc 纬度和时间回水平覆盖范围的方法 (MEZCAL)
- 批准号:
2409764 - 财政年份:2023
- 资助金额:
$ 44.47万 - 项目类别:
Standard Grant
Relationships Between Pain-Related Psychological Factors, Gait Quality, and Attention in Chronic Low Back Pain
慢性腰痛中疼痛相关心理因素、步态质量和注意力之间的关系
- 批准号:
10679189 - 财政年份:2023
- 资助金额:
$ 44.47万 - 项目类别:
The Role of VEGF in the Development of Low Back Pain Following IVD Injury
VEGF 在 IVD 损伤后腰痛发展中的作用
- 批准号:
10668079 - 财政年份:2023
- 资助金额:
$ 44.47万 - 项目类别:
Psilocybin and Affective Function in Chronic Lower Back Pain and Depression
裸盖菇素与慢性腰痛和抑郁症的情感功能
- 批准号:
10626449 - 财政年份:2023
- 资助金额:
$ 44.47万 - 项目类别:
Brain Mechanisms of Chronic Low-Back Pain: Specificity and Effects of Aging and Sex
慢性腰痛的脑机制:衰老和性别的特异性和影响
- 批准号:
10657958 - 财政年份:2023
- 资助金额:
$ 44.47万 - 项目类别:














{{item.name}}会员




