Design and Evaluation of Ultrasound Stimulation Aided Bioreactor Configurations
超声刺激辅助生物反应器配置的设计和评估
基本信息
- 批准号:7929627
- 负责人:
- 金额:$ 28.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-07 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalApplications GrantsAutologousBackBiochemicalBiologicalBiological ModelsBiomedical EngineeringBioreactorsCartilageCartilage MatrixCell physiologyCellsChemicalsChondrocytesChondrogenesisComplexControlled EnvironmentCuesCytoskeletal ModelingCytoskeletonDegenerative polyarthritisDevelopmentEngineeringEnvironmentEvaluationFeedbackFrequenciesFutureGenerationsGoalsGrowthHydrostatic PressureIn VitroInterventionJointsLaboratoriesLearningLesionLifeLigamentsLiverMechanical StimulationMechanicsMedicalMorphologyMuscleNatural regenerationOutcomePerfusionPhasePhenotypePhysiologic pulsePlayPositioning AttributeProcessPropertyResearchRetinaRoleRotationScienceSignal TransductionSkinStagingStimulusStressSurfaceSystemTechnologyTendon structureTestingTissue EngineeringTissuesTraumaUltrasonic TherapyUltrasonic waveUltrasonicsUltrasonographyWeightXenograft procedurearticular cartilagebasebioprocessboneconditioningdesignexpectationfeedingflasksimprovedin vitro Modelnovelpublic health relevancerepairedresearch studyresponsescaffoldshear stresstime intervalvocal cord
项目摘要
DESCRIPTION (provided by applicant): Articular cartilage, the avascular tissue that covers the ends of synovial joints and provides articulating joints with a durable, weight-distributing surface, damaged by illness or trauma has little capacity for self-repair. Current interventions that include autologous or heterologous transplantation, articular resurfacing, are of limited efficacy, and in the long term, untreated lesions may result in large-scale degenerative changes and osteoarthritis. Hence bioreactor and bioprocess strategies to generate tissue-engineered articular cartilage continue to be researched, as replacement of diseased or damaged cartilage represents an important medical problem that remains unsolved. The long-term goal of our research is to design and develop bioreactors or bioprocessing units that can be used to generate engineered-tissues. An important component of our strategy to generate tissue-engineered constructs is the use of bioreactors to provide adequate stimulus to the cell-seeded scaffolds. Our objective in this R21 grant application is to develop a bioreactor that utilizes stimulation by ultrasound, and conduct a detailed study on the effect of ultrasound on chondrocytes cultured in 3-D scaffolds in vitro. We will achieve the objective of this application by pursuing the following specific aims:
Specific aim 1: To develop a bioreactor that uses continuous ultrasound to enhance cartilage matrix formation and maintain chondrocyte differentiation.
Specific Aim 2: To implement a feedback loop into the US-based bioreactor.
Specific Aim 3: To evaluate the effects of continuous ultrasound on the morphology and cytoskeleton of chondrocytes maintained in the bioreactors under development.
Public Health Relevance Statement: At the conclusion of the R21 phase of the proceed research, we expect to have designed and developed a novel US-aided bioreactor configuration that incorporates a feed-back control to provide different regimes of mechanical conditioning to engineered tissues at different stages of development. We propose that the novelty of this strategy lies with the assessment of the cellular response to ultrasound exposure and, the application of this technology to efficiently and effectively grow cells (i.e. chondrocytes) in 3D culture systems. While bioreactors based on rotation and compression are well described, much remains to be learned about bioreactors based on US stimulation. In summary, while US has been shown to impact cartilage function at the cellular level, there is still a need to better understand the effect of US stimulation of chondrocytes seeded and maintained in 3-D scaffolds, which are better representatives of chondrocytes in-vitro culture. At the completion of this research, we expect to: 1) better understand how mechanical stimulation by ultrasound influences cell activity in 3-D scaffolds and 2) better understand the complex interplay between various factors (mechanical and biochemical cues) influencing tissue formation. Finally, we expect to have developed a highly reproducible in vitro model system of chondrocyte 3D-culture that likely uses US, which will allow us to carry out a detailed examination of the mechanisms of signal transduction processes in a future R-01 application.
描述(由申请人提供):关节软骨是覆盖滑膜关节末端的无血管组织,为关节关节提供耐用的重量分布表面,因疾病或创伤而受损,几乎没有自我修复的能力。目前的干预措施,包括自体或异源移植,关节表面置换,疗效有限,从长远来看,未经治疗的病变可能会导致大规模的退行性变化和骨关节炎。因此,生物反应器和生物工艺的策略,以产生组织工程关节软骨继续研究,作为更换患病或受损的软骨代表了一个重要的医学问题,仍然没有解决。我们研究的长期目标是设计和开发可用于产生工程组织的生物反应器或生物处理单元。我们的策略,以产生组织工程化的结构的一个重要组成部分是使用生物反应器,以提供足够的刺激细胞接种的支架。我们在这个R21基金申请的目标是开发一个生物反应器,利用超声刺激,并进行了详细的研究,超声对软骨细胞在三维支架体外培养的影响。我们将通过追求以下具体目标来实现本申请的目标:
具体目标1:开发一种利用连续超声促进软骨基质形成和维持软骨细胞分化的生物反应器。
具体目标2:在美国生物反应器中实施反馈回路。
具体目标3:评价持续超声对生物反应器中软骨细胞形态和细胞骨架的影响。
公共卫生相关性声明:在进行研究的R21阶段结束时,我们希望设计和开发一种新型的美国辅助生物反应器配置,该配置包含反馈控制,以在不同的开发阶段为工程组织提供不同的机械调节机制。我们提出,这种策略的新奇在于评估细胞对超声暴露的反应,以及应用这种技术在3D培养系统中有效地培养细胞(即软骨细胞)。虽然基于旋转和压缩的生物反应器已得到很好的描述,但关于基于US刺激的生物反应器仍有许多有待了解。总之,虽然US已显示在细胞水平上影响软骨功能,但仍需要更好地理解US刺激接种并维持在3-D支架中的软骨细胞的效果,3-D支架是软骨细胞体外培养的更好代表。在这项研究完成后,我们希望:1)更好地了解超声机械刺激如何影响三维支架中的细胞活性,2)更好地了解影响组织形成的各种因素(机械和生化线索)之间的复杂相互作用。最后,我们希望开发出一种高度可重复的软骨细胞三维培养体外模型系统,该系统可能使用US,这将使我们能够在未来的R-01应用中对信号转导过程的机制进行详细检查。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved cellular infiltration into nanofibrous electrospun cross-linked gelatin scaffolds templated with micrometer-sized polyethylene glycol fibers.
- DOI:10.1088/1748-6041/6/5/055012
- 发表时间:2011-10
- 期刊:
- 影响因子:0
- 作者:Skotak M;Ragusa J;Gonzalez D;Subramanian A
- 通讯作者:Subramanian A
Integrin-mediated mechanotransduction pathway of low-intensity continuous ultrasound in human chondrocytes.
- DOI:10.1016/j.ultrasmedbio.2012.06.002
- 发表时间:2012-10
- 期刊:
- 影响因子:2.9
- 作者:Whitney, Nicholas P.;Lamb, Allyson C.;Louw, Tobias M.;Subramanian, Anuradha
- 通讯作者:Subramanian, Anuradha
Enhanced depth-independent chondrocyte proliferation and phenotype maintenance in an ultrasound bioreactor and an assessment of ultrasound dampening in the scaffold.
超声生物反应器中增强的与深度无关的软骨细胞增殖和表型维持以及支架中超声阻尼的评估。
- DOI:10.1016/j.actbio.2014.07.013
- 发表时间:2014
- 期刊:
- 影响因子:9.7
- 作者:GuhaThakurta,Sanjukta;Kraft,Mikail;Viljoen,HendrikJ;Subramanian,Anuradha
- 通讯作者:Subramanian,Anuradha
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anuradha Subramanian其他文献
Anuradha Subramanian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anuradha Subramanian', 18)}}的其他基金
Optimizing Ultrasound Regimens for Achieving Cartilage Repair
优化超声治疗方案以实现软骨修复
- 批准号:
10570858 - 财政年份:2022
- 资助金额:
$ 28.38万 - 项目类别:
Optimizing Ultrasound Regimens for Achieving Cartilage Repair
优化超声治疗方案以实现软骨修复
- 批准号:
10366768 - 财政年份:2022
- 资助金额:
$ 28.38万 - 项目类别:
Achieving Integrative Cartilage Repair Success Under Low Intensity Ultrasound
在低强度超声下实现综合软骨修复成功
- 批准号:
9917692 - 财政年份:2019
- 资助金额:
$ 28.38万 - 项目类别:
Biomimetic Nanofibrillar Scaffolds For Cartilage Tissue Engineering
用于软骨组织工程的仿生纳米纤维支架
- 批准号:
7201826 - 财政年份:2007
- 资助金额:
$ 28.38万 - 项目类别:
Biomimetic Nanofibrillar Scaffolds For Cartilage Tissue Engineering
用于软骨组织工程的仿生纳米纤维支架
- 批准号:
7410070 - 财政年份:2007
- 资助金额:
$ 28.38万 - 项目类别:














{{item.name}}会员




