DESIGN OF MAGNETIC ELECTRODES FOR IMPROVING ELECTROSYNTHETIC PROCESSES
用于改进电合成工艺的磁电极设计
基本信息
- 批准号:8168835
- 负责人:
- 金额:$ 0.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-10 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:AlcoholsAlkaliesAreaCarbohydratesCellsChemicalsComputer Retrieval of Information on Scientific Projects DatabaseElectrochemistryElectrodesEnzymesFatty AcidsFundingGrantImmobilized EnzymesInstitutionKineticsMagnetismNylonsPolymersProcessProductionResearchResearch PersonnelResourcesSodium HydroxideSourceStructureStudy of magneticsSurfaceTechniquesTimeUnited States National Institutes of Healthcatalystchemical reactionchlorine gascostdensitydesignimprintimprovedinterest
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
My general research is in the area of electrochemistry. One of my research interests involves the design of magnetic microparticle/catalyst electrodes for improving electrosynthetic processes. Nylon, sodium hydroxide, and chlorine gas are examples of the many chemicals that are synthesized electrochemically. However, this electrochemical synthesis (or electrosynthesis) requires large power demands due to the poor kinetics of the electrochemical processes. Magnetic electrodes are being designed to increase kinetics of magnetically susceptible electrochemical processes. Thereby, decreasing the power demand and cost of chemical production. We are studying magnetic catalysts and electrodes for use in the chlor-alkali process and nylon synthesis.
My second research interest involves increasing the selectivity of polymer modified electrodes using molecularly imprinted polymers. Selectivity is one of electrochemistry's largest problems. We increase selectivity by modifying the surface of the electrode with conducting polymers that are molecularly imprinted for our analyte.
The third main focus of the Minteer Group is high power density and long lifetime biofuel cells. A biofuel cell is a type of battery that can be recharged with the addition of more fuel and utilizes enzymes as biocatalysts in order to convert chemical reactions to electrical energy. Our research group has developed a powerful technique to immobilize enzymes at the electrode surface. This technique has helped to stabilize enzymes for increased periods time (months instead of days) by protecting fragile enzymes in tiny pore-like structures resulting in increased power and lifetime of the biofuel cell. In addition, with this technique a wide variety of fuels can be utilized including carbohydrates, fatty acids, and alcohols.
这个子项目是许多研究子项目中的一个
由NIH/NCRR资助的中心赠款提供的资源。子项目和
研究者(PI)可能从另一个NIH来源获得了主要资金,
因此可以在其他CRISP条目中表示。所列机构为
研究中心,而研究中心不一定是研究者所在的机构。
我的主要研究领域是电化学。我的研究兴趣之一涉及磁性微粒/催化剂电极的设计,以改善电合成过程。尼龙、氢氧化钠和氯气都是电化学合成的许多化学品的例子。然而,由于电化学过程的动力学差,这种电化学合成(或电合成)需要大的功率需求。磁性电极被设计为增加磁敏感电化学过程的动力学。从而降低化工生产的电力需求和成本。我们正在研究用于氯碱工艺和尼龙合成的磁性催化剂和电极。
我的第二个研究兴趣是利用分子印迹聚合物提高聚合物修饰电极的选择性。选择性是电化学最大的问题之一。我们通过用导电聚合物修饰电极表面来提高选择性,这些聚合物对我们的分析物进行分子印迹。
Minteer集团的第三个主要重点是高功率密度和长寿命生物燃料电池。生物燃料电池是一种电池,可以通过添加更多的燃料来充电,并利用酶作为生物催化剂,以将化学反应转化为电能。我们的研究小组已经开发出一种强大的技术来将酶固定在电极表面。这种技术有助于通过保护微小孔状结构中的脆弱酶来增加酶的稳定时间(数月而不是数天),从而增加生物燃料电池的功率和寿命。此外,通过这种技术,可以利用各种各样的燃料,包括碳水化合物、脂肪酸和醇。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shelley D Minteer其他文献
Advances in electrochemical cofactor regeneration: enzymatic and non-enzymatic approaches
- DOI:
10.1016/j.copbio.2021.06.013 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:7.000
- 作者:
Yoo Seok Lee;Rokas Gerulskis;Shelley D Minteer - 通讯作者:
Shelley D Minteer
Shelley D Minteer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shelley D Minteer', 18)}}的其他基金
DESIGN OF MAGNETIC ELECTRODES FOR IMPROVING ELECTROSYNTHETIC PROCESSES
用于改进电合成工艺的磁电极设计
- 批准号:
8361425 - 财政年份:2011
- 资助金额:
$ 0.78万 - 项目类别:
相似海外基金
Understanding the Volatile Evolution of Arc Magmas: Alkalies and Mixed (H2O + CO2) Volatile Solubility in Basalts and Basaltic Andesites
了解弧岩浆的挥发性演化:玄武岩和玄武安山岩中的碱金属和混合 (H2O CO2) 挥发性溶解度
- 批准号:
0838563 - 财政年份:2009
- 资助金额:
$ 0.78万 - 项目类别:
Standard Grant
Clinker's coating:role of alkalies and refractories texture
熟料的涂层:碱和耐火材料质地的作用
- 批准号:
200906-1996 - 财政年份:1999
- 资助金额:
$ 0.78万 - 项目类别:
Collaborative Research and Development Grants
Clinkers coating:role of alkalies and refractories texture
熟料涂层:碱和耐火材料质地的作用
- 批准号:
200906-1996 - 财政年份:1998
- 资助金额:
$ 0.78万 - 项目类别:
Collaborative Research and Development Grants
Clinker's coating:role of alkalies and refractories texture
熟料的涂层:碱和耐火材料质地的作用
- 批准号:
200906-1996 - 财政年份:1997
- 资助金额:
$ 0.78万 - 项目类别:
Collaborative Research and Development Grants