Predicting Morbidity from Pediatric Critical Care
预测儿科重症监护的发病率
基本信息
- 批准号:8010187
- 负责人:
- 金额:$ 27.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-12-24 至 2014-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdmission activityAdultAffectAgeAreaBlood Coagulation DisordersBostonCardiovascular systemCaringCase-Mix AdjustmentsCessation of lifeCharacteristicsChildChildhoodChronicChronic lung diseaseCritical CareDataDecision MakingDevelopmentDiagnosisExclusionFoundationsFunctional disorderFundingHealth StatusHealthcareHospitalsHourHypoglycemiaImageInjuryInstitutionIntensive CareIntracranial HemorrhagesKidneyLeadLinear ModelsLinear RegressionsLogistic RegressionsMeasuresMechanical ventilationMedicalMedicineMetabolicMethodologyMethodsModelingMorbidity - disease rateMyopathyNatureNeonatalNervous System TraumaNeurologicNew YorkOutcomeOutcomes ResearchPatientsPediatric HospitalsPediatric Intensive Care UnitsPerinatalPhysiologicalPopulation CharacteristicsPrincipal InvestigatorProbabilityQuality of CareRecoveryRegression AnalysisRehabilitation therapyResearch MethodologyRiskSample SizeSamplingSeveritiesSeverity of illnessStatistical MethodsStatistical ModelsSteroidsSystemWorkbasedisabilityfunctional disabilityfunctional statusmethod developmentmortalityoutcome forecastpatient populationpopulation basedprogramspublic health relevancerespiratorysuccess
项目摘要
DESCRIPTION (provided by applicant): Critical care has excellent measures of severity of illness calibrated to mortality, but severity may be reflected in subsequent morbidity as well survival. A major challenge of critical care outcomes research and applicable to all medical outcomes and quality issues is the development of methods that predict the full range of outcomes from normal through the range of morbidities as well as death. The AIM of this proposal is to develop and validate a predictor of 3 or more outcome states from pediatric intensive care: death, survival one or more states of reduced functional status, and survival with normal or unchanged functional status. Preliminary Studies demonstrate a) the feasibility of the statistical approach and b) the applicability and utility of a new functional status assessment method (Functional Status Score, FSS) developed by the CPCCRN and by this PI for the purpose of this proposal. METHODS: Consecutive patients without exclusion from the participating PICUS will be utilized. Core data will consist of physiological data, diagnoses, age and other demographic information, FSS (pre-admission, PICU discharge, hospital discharge), survival/death (PICU and hospital), therapies affecting functional status, imaging, Outcome prediction for multiple functional states with normal function and death being the extreme will include both "simple" linear models with the FSS contributing the gradations of outcome, and polychotomous logistic regression analysis for models of 3 or more discrete outcome states. Statistical models will use up to 12 predictor variables including PRISM III score without neurological variables, neurological variables only, pre- ICU care area, operative status, diagnoses (up to 6), age, baseline FSS. Statistical methods will include "simple" linear regression conceptualizing outcome on a scale of normal to death with worsening functional states in between and polychotomous logistic regression utilizing the FSS to define 2 of more outcome states in addition to death. Sample size estimates based on a 4% mortality rate and a 4% new severe functional status are 5067 but will be re-estimated when units are selected.
PUBLIC HEALTH RELEVANCE: Shifting the paradigm of severity assessment by advancing its conceptual and statistical foundations will stimulate change. Important advances could occur in quality research and methods, long-term outcome forecasting including pediatric disability at PICU discharge, and decision making by including severely decreased functional status probabilities as well as mortality probabilities based on admission severity.
描述(由申请人提供):重症监护对疾病的严重程度有很好的衡量标准,以死亡率为标准,但严重程度可能反映在随后的发病率和生存率上。重症监护结果研究和适用于所有医疗结果和质量问题的一个主要挑战是开发预测从正常到发病率范围以及死亡的全部结果的方法。本提案的目的是开发和验证儿童重症监护3种或更多结局状态的预测器:死亡,生存一种或多种功能状态降低的状态,生存正常或功能状态不变。初步研究证明了a)统计方法的可行性和b)由CPCCRN和本PI为本提案的目的开发的新的功能状态评估方法(功能状态评分,FSS)的适用性和实用性。方法:使用未排除参与PICUS的连续患者。核心数据将包括生理数据、诊断、年龄和其他人口统计信息、FSS(入院前、PICU出院、出院)、生存/死亡(PICU和医院)、影响功能状态的治疗、影像学、功能正常和死亡为极端的多种功能状态的结果预测将包括“简单”线性模型,其中FSS有助于结果的分级;对3个或更多离散结果状态的模型进行多元逻辑回归分析。统计模型将使用多达12个预测变量,包括PRISM III评分不含神经学变量,仅神经学变量,ICU前护理区域,手术状态,诊断(最多6个),年龄,基线FSS。统计方法将包括“简单”线性回归,将结果概念化在正常到死亡的范围内,中间的功能状态恶化,以及利用FSS定义死亡之外的两种以上结果状态的多随机逻辑回归。根据4%的死亡率和4%的新严重功能状态估计的样本量为5067,但在选择单位时将重新估计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heidi J Dalton其他文献
Propofol Anesthesia for Bone Marrow Aspiration/Biopsy and Intrathecal Chemotherapy in the Pediatric Intensive Care Unit 766
- DOI:
10.1203/00006450-199804001-00787 - 发表时间:
1998-04-01 - 期刊:
- 影响因子:3.100
- 作者:
James H Hertzog;Heidi J Dalton;Barry D Anderson;Aziza T Shad;Joseph E Gootenberg;Gabriel J Hauser - 通讯作者:
Gabriel J Hauser
MATURATIONAL DIFFERENCES IN PULMONARY VASCULAR IMPEDANCE RESPONSE TO INHALED NITRIC OXIDE (NO) IN HYPOXIC PIGLETS. † 1961
缺氧仔猪对吸入一氧化氮(NO)的肺血管阻抗反应的成熟差异。 † 1961
- DOI:
10.1203/00006450-199604001-01985 - 发表时间:
1996-04-01 - 期刊:
- 影响因子:3.100
- 作者:
Heidi J Dalton;Maria T Pettit;Jeff L Myers;Yinang Wang;John T Cockerham;Richard A Hopkins - 通讯作者:
Richard A Hopkins
Heidi J Dalton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heidi J Dalton', 18)}}的其他基金
Predicting Morbidity from Pediatric Critical Care
预测儿科重症监护的发病率
- 批准号:
7798748 - 财政年份:2009
- 资助金额:
$ 27.76万 - 项目类别:
Predicting Morbidity from Pediatric Critical Care
预测儿科重症监护的发病率
- 批准号:
8197201 - 财政年份:2009
- 资助金额:
$ 27.76万 - 项目类别:
Predicting Morbidity from Pediatric Critical Care
预测儿科重症监护的发病率
- 批准号:
8601311 - 财政年份:2009
- 资助金额:
$ 27.76万 - 项目类别:
Predicting Morbidity from Pediatric Critical Care
预测儿科重症监护的发病率
- 批准号:
8402389 - 财政年份:2009
- 资助金额:
$ 27.76万 - 项目类别:














{{item.name}}会员




