Probing the real-time kinetics and steady-state dynamics of gene expression

探索基因表达的实时动力学和稳态动力学

基本信息

项目摘要

DESCRIPTION (provided by applicant): Gene regulatory networks are decision-making and control systems of cells whose dynamical properties underlie their proper function. Large scale in silico models can aid in understanding how changes in network components lead to qualitatively different dynamics, aberrant function, and disease states. These models often use a bottom-up engineering approach; therefore, the accuracy of models is contingent on appropriate descriptions for component interactions, with just enough detail to capture the essential dynamics. Promoters dictate how gene expression (output) depends on inputs (gene-specific regulators). This relationship has traditionally been described using semi-empirical models based on the thermodynamics of protein-DNA interactions. However, even a single eukaryotic promoter likely exhibits complex dynamics because of many non-equilibrium interactions. Two dynamical properties of single genes that can qualitatively change the dynamics of the regulatory networks in which they are embedded are variability (stochastic noise) in expression of single cells and delays and memory in gene activation or repression. The project goal is to describe these dynamics using simple lumped kinetic models and connect model parameters to promoter architecture. This would be invaluable to improving larger scale efforts aimed at understanding network malfunction in disease or identifying therapeutic targets. Using fluorescence in situ hybridizaition (FISH) to detect single mRNA's in single budding yeast cells, we can extract mRNA distributions to infer steady-state dynamics and noise in gene expression. We have also developed a novel tool, the 'gene oscilloscope', to probe the kinetics of gene activation and the presence of delays and memory in yeast. The Pho4p activator, whose activity is controlled at the level of nuclear localization, is the observable, dynamically controllable input, and a fluorescent reporter is the observable output. Input/output behavior is extracted from movies of single cells grown in microfluidic devices. The current oscilloscope is limited to studies of phosphate-responsive (PHO) genes regulated by Pho4p. In Aim 1, we will identify a minimal shuttling domain in Pho4p to which we can fuse an arbitrary activation and DNA binding domain, creating a modular tool capable of probing an arbitrary promoter. In Aim 2, we will measure mRNA statistics in a panel of synthetic TET promoter variants to assess the suitability of a simple kinetic model in describing those statistics across a range of perturbations and establish how promoter and activator properties influence mRNA statistics. In Aim 3, we will use the gene oscilloscope to study how PHO promoter chromatin architecture confers delays in gene activation and measure accurate delay distributions. We will also study the frequency response of these promoters, to establish whether delayed activation filters high frequency signals. Together, these aims will help establish simple ways of incorporating crucial dynamical properties in models and yield mechanistic insights by comparing how different features of promoters and activators affect kinetics. PUBLIC HEALTH RELEVANCE: The dynamical nature of gene regulation can lead to single cell variability, or noise, in expression and delays in activation, which qualitatively change the predictions of larger scale in silico models of gene regulatory networks. By examining how promoter architecture and activator choice influences these dynamics in budding yeast using novel experimental tools, we will likely establish simple models to incorporate this behavior. These basic results should influence and constrain modeling efforts and assumptions in diseased and normal regulatory networks in eukaryotic organisms, making this project is relevant to the mission of NIH and of broad interest to researchers studying gene regulation.
描述(由申请人提供):基因调控网络是细胞的决策和控制系统,其动力学特性是其正常功能的基础。大规模的计算机模拟模型可以帮助理解网络组件的变化如何导致定性不同的动力学,异常功能和疾病状态。这些模型通常使用自下而上的工程方法;因此,模型的准确性取决于对组件交互的适当描述,并具有足够的细节来捕获基本动态。启动子决定基因表达(输出)如何依赖于输入(基因特异性调节子)。这种关系传统上是用基于蛋白质-DNA相互作用热力学的半经验模型来描述的。然而,由于许多非平衡相互作用,即使是单个真核启动子也可能表现出复杂的动力学。单基因的两个动力学特性可以定性地改变它们嵌入其中的调控网络的动力学,这两个动力学特性是单细胞表达的可变性(随机噪声)和基因激活或抑制的延迟和记忆。该项目的目标是使用简单的集总动力学模型来描述这些动力学,并将模型参数连接到启动子结构。这将是非常宝贵的,以改善更大规模的努力,旨在了解网络故障的疾病或确定治疗目标。 利用荧光原位杂交技术(FISH)检测单个芽殖酵母细胞中的单个mRNA,我们可以提取mRNA的分布来推断基因表达中的稳态动力学和噪声。我们还开发了一种新的工具,“基因显微镜”,以探测基因激活的动力学和酵母中延迟和记忆的存在。Pho 4p激活剂,其活性在核定位水平上被控制,是可观察的、动态可控的输入,而荧光报告物是可观察的输出。输入/输出行为是从微流体装置中生长的单细胞的电影中提取的。目前的示波器仅限于研究磷酸盐响应(PHO)基因的调控Pho 4p。在目标1中,我们将确定一个最小的穿梭结构域在pho 4p,我们可以融合任意的激活和DNA结合结构域,创建一个模块化的工具,能够探测任意的启动子。在目标2中,我们将测量一组合成泰特启动子变体中的mRNA统计数据,以评估简单动力学模型在描述一系列扰动下的统计数据时的适用性,并确定启动子和激活子特性如何影响mRNA统计数据。在目标3中,我们将使用基因示波器来研究PHO启动子染色质结构如何赋予基因激活延迟并测量精确的延迟分布。我们还将研究这些启动子的频率响应,以确定延迟激活是否过滤高频信号。总之,这些目标将有助于建立简单的方法,将关键的动力学特性纳入模型,并通过比较启动子和激活剂的不同特征如何影响动力学来产生机理见解。 公共卫生关系:基因调控的动态性质可能导致单细胞表达的变异性或噪声以及激活的延迟,这定性地改变了基因调控网络的大规模计算机模型的预测。通过使用新的实验工具研究启动子结构和激活剂选择如何影响芽殖酵母中的这些动态,我们可能会建立简单的模型来整合这种行为。这些基本的结果应该影响和约束的建模工作和假设在真核生物的疾病和正常的监管网络,使这个项目是相关的美国国立卫生研究院的使命和广泛的兴趣研究基因调控。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Narendra Maheshri其他文献

Narendra Maheshri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Narendra Maheshri', 18)}}的其他基金

Probing the real-time kinetics and steady-state dynamics of gene expression
探索基因表达的实时动力学和稳态动力学
  • 批准号:
    8337328
  • 财政年份:
    2011
  • 资助金额:
    $ 23.19万
  • 项目类别:
Probing the real-time kinetics and steady-state dynamics of gene expression
探索基因表达的实时动力学和稳态动力学
  • 批准号:
    8536852
  • 财政年份:
    2011
  • 资助金额:
    $ 23.19万
  • 项目类别:
Probing the real-time kinetics and steady-state dynamics of gene expression
探索基因表达的实时动力学和稳态动力学
  • 批准号:
    8730677
  • 财政年份:
    2011
  • 资助金额:
    $ 23.19万
  • 项目类别:

相似海外基金

Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
  • 批准号:
    23H01982
  • 财政年份:
    2023
  • 资助金额:
    $ 23.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 23.19万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
  • 批准号:
    10682794
  • 财政年份:
    2023
  • 资助金额:
    $ 23.19万
  • 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
  • 批准号:
    10598276
  • 财政年份:
    2023
  • 资助金额:
    $ 23.19万
  • 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233343
  • 财政年份:
    2023
  • 资助金额:
    $ 23.19万
  • 项目类别:
    Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233342
  • 财政年份:
    2023
  • 资助金额:
    $ 23.19万
  • 项目类别:
    Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
  • 批准号:
    479363
  • 财政年份:
    2023
  • 资助金额:
    $ 23.19万
  • 项目类别:
    Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
  • 批准号:
    10681989
  • 财政年份:
    2023
  • 资助金额:
    $ 23.19万
  • 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
  • 批准号:
    2237240
  • 财政年份:
    2023
  • 资助金额:
    $ 23.19万
  • 项目类别:
    Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
  • 批准号:
    2305592
  • 财政年份:
    2023
  • 资助金额:
    $ 23.19万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了