Genetically Specific Therapy Against Pathogenic Bacteria

针对病原菌的基因特异性疗法

基本信息

项目摘要

DESCRIPTION (provided by applicant): Humans are losing the arms race against infectious bacteria as bacteria evolve resistance to broad-spectrum antibiotics. This is both a health problem and an environmental problem. The health problem is that we are losing the ability to effectively treat many bacterial infections. The environmental problem is that we are disrupting the microbial ecology around us by intensive use of antibiotics that kill bacteria indiscriminately. We need a new strategy that will target pathogens without affecting either commensal bacteria or the human host, and that will evolve continually as bacteria evolve to maintain control over infectious bacteria. The broad, long term objective of our application is to lay the foundations for such a new strategy. In this approach, instead of a broad spectrum antibiotic that kills many types of bacteria the bacteria would be infected by a synthetic virus, or virus-like particle, that brings into the bacterial cells antisense RNA. As the reader probably knows, one of the several uses of RNA in the cell is to regulate the expression of genes. We will emulate nature by designing RNA specifically to knock down critical genes in pathogenic bacteria only, and to have no effect on either beneficial bacteria or the human host. The virus-like particles will carry several different antisense RNA's, each of which separately will be sufficient to either kill or render nonvirulent the particular pathogenic bacterium that is being targeted. Bacteria will find it very difficult to evolve resistance to this approach for two fundamental reasons: 1) Because the antisense RNA's are designed to be specific to the pathogen's genome, they can be redesigned as the pathogen's genome changes, and 2) because the bacteria will be infected with multiple lethal RNA, there will not be a strong selection pressure favoring bacterial variants that can resist the effects of any one of the RNA's. The chances of a bacterium developing resistance to multiple lethal agents, when there is no selection advantage for developing resistance to any single agent, is small. Our research strategy rests on three areas of expertise: 1) bioinformatics to extract from the relevant genomic data all the antisense RNA sequences that could potentially knock down critical genes in the pathogenic bacteria, 2) nanoscience to induce the self-assembly of the virus-like particles from the constituent proteins and nucleic acids, and 3) microbial genetics and physiology to: a) add human knowledge to the computer outputs as a guide to prioritizing potential targets and b) to do the experiments on the pathogens in order to assess the effects of the antisense RNA. These three areas of expertise are embodied in the collaborating laboratories of Eric Jakobsson (bioinformatics), Jeff Brinker (nanoscience) and Stanley Maloy (microbiology). For this initial project we have chosen Salmonella as the target. Salmonella is an important pathogen whose genetics and mechanisms of virulence have been extensively studied, which will be a big advantage in interpreting experimental data. Also, Salmonella is acquiring resistance to several antibiotics. If we succeed in the laboratory with Salmonella, our strategy should be applicable to a wide variety of infectious diseases. PUBLIC HEALTH RELEVANCE: If the proposed research is successful, it will lay the foundations for transforming our approach to antimicrobial therapy. Broad spectrum antibiotics will be replaced with precisely targeted genetic controls aimed specifically at particular pathogens. The problem of antibiotic resistance will be overcome, as will the collateral damage done to beneficial microbiomes by antibiotics.
描述(由申请人提供):随着细菌对广谱抗生素产生耐药性,人类正在失去对抗感染性细菌的军备竞赛。这既是一个健康问题,也是一个环境问题。健康问题是我们正在失去有效治疗许多细菌感染的能力。环境问题是,我们正在通过大量使用抗生素来破坏我们周围的微生物生态,这些抗生素不分青红皂白地杀死细菌。我们需要一种新的策略,既能靶向病原体,又不影响肠道细菌或人类宿主,而且随着细菌的进化,这种策略将不断进化,以保持对传染性细菌的控制。我们申请的广泛和长期目标是为这种新战略奠定基础。在这种方法中,细菌将被一种合成病毒或病毒样颗粒感染,而不是杀死许多类型细菌的广谱抗生素,这种病毒或病毒样颗粒将反义RNA带入细菌细胞。正如读者可能知道的那样,RNA在细胞中的几种用途之一是调节基因的表达。我们将模仿自然,设计RNA,专门敲除致病细菌中的关键基因,而对有益细菌或人类宿主都没有影响。病毒样颗粒将携带几种不同的反义RNA,每种反义RNA分别足以杀死所靶向的特定病原性细菌或使其无毒。细菌会发现很难进化出对这种方法的抗性,这有两个基本原因:1)由于反义RNA被设计为对病原体的基因组具有特异性,因此它们可以随着病原体基因组的变化而重新设计,以及2)由于细菌将被多种致命RNA感染,就不会有强烈的选择压力来支持能够抵抗任何一种RNA作用的细菌变体。当对任何单一药剂产生抗性没有选择优势时,细菌对多种致死药剂产生抗性的机会很小。我们的研究策略依赖于三个专业领域:1)生物信息学,从相关的基因组数据中提取所有可能敲除致病细菌中关键基因的反义RNA序列,2)纳米科学,诱导病毒样颗粒从组成蛋白质和核酸中自组装,以及3)微生物遗传学和生理学:a)将人类知识添加到计算机输出中,作为对潜在靶标进行优先排序的指导,和B)对病原体进行实验,以评估反义RNA的作用。这三个专业领域体现在Eric Jakobsson(生物信息学),Jeff Brinker(纳米科学)和Stanley Maloy(微生物学)的合作实验室中。对于这个初始项目,我们选择沙门氏菌作为目标。沙门氏菌是一种重要的病原菌,其遗传学和毒力机制已被广泛研究,这将是解释实验数据的一大优势。此外,沙门氏菌正在获得对几种抗生素的耐药性。如果我们在沙门氏菌的实验室中取得成功,我们的策略应该适用于各种各样的传染病。 公共卫生相关性:如果拟议的研究成功,它将为我们改变抗菌治疗方法奠定基础。广谱抗生素将被专门针对特定病原体的精确靶向遗传控制所取代。抗生素耐药性的问题将被克服,抗生素对有益微生物组的附带损害也将被克服。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

C Jeffrey Brinker其他文献

C Jeffrey Brinker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('C Jeffrey Brinker', 18)}}的其他基金

Genetically Specific Therapy Against Pathogenic Bacteria
针对病原菌的基因特异性疗法
  • 批准号:
    8324190
  • 财政年份:
    2011
  • 资助金额:
    $ 33.4万
  • 项目类别:
Genetically Specific Therapy Against Pathogenic Bacteria
针对病原菌的基因特异性疗法
  • 批准号:
    8703130
  • 财政年份:
    2011
  • 资助金额:
    $ 33.4万
  • 项目类别:
Genetically Specific Therapy Against Pathogenic Bacteria
针对病原菌的基因特异性疗法
  • 批准号:
    8505508
  • 财政年份:
    2011
  • 资助金额:
    $ 33.4万
  • 项目类别:
Peptide-directed protocells and virus-like particles-new nanoparticle platforms f
肽导向的原始细胞和病毒样颗粒——新的纳米颗粒平台
  • 批准号:
    8320745
  • 财政年份:
    2010
  • 资助金额:
    $ 33.4万
  • 项目类别:
Peptide-directed protocells and virus-like particles-new nanoparticle platforms f
肽导向的原始细胞和病毒样颗粒——新的纳米颗粒平台
  • 批准号:
    8521153
  • 财政年份:
    2010
  • 资助金额:
    $ 33.4万
  • 项目类别:
Peptide-directed protocells and virus-like particles-new nanoparticle platforms f
肽导向的原始细胞和病毒样颗粒——新的纳米颗粒平台
  • 批准号:
    8706821
  • 财政年份:
    2010
  • 资助金额:
    $ 33.4万
  • 项目类别:
Peptide-directed protocells and virus-like particles-new nanoparticle platforms f
肽导向的原始细胞和病毒样颗粒——新的纳米颗粒平台
  • 批准号:
    8138640
  • 财政年份:
    2010
  • 资助金额:
    $ 33.4万
  • 项目类别:
Peptide-directed protocells and virus-like particles-new nanoparticle platforms f
肽导向的原始细胞和病毒样颗粒——新的纳米颗粒平台
  • 批准号:
    7976177
  • 财政年份:
    2010
  • 资助金额:
    $ 33.4万
  • 项目类别:

相似海外基金

Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
  • 批准号:
    10591918
  • 财政年份:
    2023
  • 资助金额:
    $ 33.4万
  • 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
  • 批准号:
    23K15383
  • 财政年份:
    2023
  • 资助金额:
    $ 33.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
  • 批准号:
    23H03556
  • 财政年份:
    2023
  • 资助金额:
    $ 33.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
  • 批准号:
    23K17212
  • 财政年份:
    2023
  • 资助金额:
    $ 33.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
  • 批准号:
    22H03519
  • 财政年份:
    2022
  • 资助金额:
    $ 33.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
  • 批准号:
    563657-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 33.4万
  • 项目类别:
    Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
  • 批准号:
    10521849
  • 财政年份:
    2022
  • 资助金额:
    $ 33.4万
  • 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
  • 批准号:
    10671022
  • 财政年份:
    2022
  • 资助金额:
    $ 33.4万
  • 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
  • 批准号:
    10670918
  • 财政年份:
    2022
  • 资助金额:
    $ 33.4万
  • 项目类别:
Adverse Effects of Using Laser Diagnostics in High-Speed Compressible Flows
在高速可压缩流中使用激光诊断的不利影响
  • 批准号:
    RGPIN-2018-04753
  • 财政年份:
    2022
  • 资助金额:
    $ 33.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了