Membrane protein structure modeling with experimental restraints

具有实验限制的膜蛋白结构建模

基本信息

  • 批准号:
    8025220
  • 负责人:
  • 金额:
    $ 31.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-05-01 至 2015-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): In this project we will develop a computational approach to model membrane proteins for which a limited number of experimental restraints are available but for which the experimental structure is difficult to obtain. We will utilize our recently developed fragment library of supersecondary structure elements (Smotifs) that exhaustively classifies all known building blocks of proteins. Recently we have shown that this library of Smotifs saturated almost 10 years ago, and that new folds seem to be a novel combination of existing Smotifs. Therefore we hypothesize that all protein folds should be possible to build from this library. In order to model membrane proteins we can calculate hypothetical chemical shift values for all our Smotifs, while chemical shift values for a protein of interest can usually be quickly and easily obtained and assigned from initial NMR experiments. This proposal is concerned with developing algorithms that can match experimentally observed and theoretically calculated chemical shift patterns of Smotifs and therefore identify a subset of Smotif conformations that form a protein. The second part of the proposal is concerned of setting up an optimization approach (a sampling algorithm along the degrees of freedom of Smotif combinations and a scoring function) that will rapidly assemble overlapping Smotifs into compact folds using additional experimental restraints obtained from NMR dipolar coupling data. In later years of the project we will apply our technique on specific proteins for which chemical shift and dipolar coupling data were obtained and subsequently verify our computational models with spin labeling experiments. The technologies developed in this application will provide the foundation required for efficient modeling of membrane proteins for which a very limited number of experimental structures are available in the PDB. Meanwhile membrane proteins constitute the majority of targets of currently known drugs. Our effort is focused on increasing the rate of discovering membrane protein structures and therefore will lay a foundation for more effective rational drug design. PUBLIC HEALTH RELEVANCE: The majority of currently known drugs target membrane proteins, of which only about 0.5% have been structurally characterized. In this proposal we will develop a fragment assembly modeling approach that takes advantage of NMR chemical shift data and our recently developed supersecondary structure library. Our effort is concerned with increasing the rate of discovering membrane protein structures and will lay a foundation for effective rational drug design for this important class of proteins.
描述(由申请人提供):在这个项目中,我们将开发一种计算方法来模拟膜蛋白,其中有限数量的实验限制是可用的,但实验结构是难以获得的。我们将利用我们最近开发的超二级结构元件(Smotifs)片段库,对所有已知的蛋白质构建模块进行详尽分类。最近,我们已经证明,这个Smotifs库在大约10年前就饱和了,新的褶皱似乎是现有Smotifs的新组合。因此,我们假设所有的蛋白质折叠都应该可以从这个文库中构建。为了模拟膜蛋白,我们可以计算所有Smotifs的假设化学位移值,而感兴趣的蛋白质的化学位移值通常可以快速轻松地从初始NMR实验中获得和分配。该提案涉及开发算法,该算法可以匹配实验观察到的和理论计算的Smotif的化学位移模式,从而识别形成蛋白质的Smotif构象的子集。该提案的第二部分涉及建立一个优化方法(采样算法沿着的Smotif组合和评分函数的自由度),将快速组装重叠Smotif到紧凑的褶皱使用额外的实验限制从NMR偶极耦合数据。在该项目的后期,我们将把我们的技术应用于获得化学位移和偶极耦合数据的特定蛋白质,并随后用自旋标记实验验证我们的计算模型。 本申请中开发的技术将为膜蛋白的有效建模提供所需的基础,其中PDB中的实验结构数量非常有限。同时,膜蛋白构成了目前已知药物的大部分靶点。我们的努力集中在提高膜蛋白结构的发现率,因此将为更有效的合理药物设计奠定基础。 公共卫生相关性:大多数目前已知的药物靶向膜蛋白,其中只有约0.5%的结构特征。在这个建议中,我们将开发一个片段组装建模方法,利用NMR化学位移数据和我们最近开发的超二级结构库。我们的努力是关于增加发现膜蛋白结构的速率,并将为这类重要蛋白质的有效合理药物设计奠定基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andras Fiser其他文献

Andras Fiser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andras Fiser', 18)}}的其他基金

Molecular basis of recognition in the Immunological Synapse
免疫突触识别的分子基础
  • 批准号:
    10613479
  • 财政年份:
    2020
  • 资助金额:
    $ 31.54万
  • 项目类别:
Molecular basis of recognition in the Immunological Synapse
免疫突触识别的分子基础
  • 批准号:
    10386851
  • 财政年份:
    2020
  • 资助金额:
    $ 31.54万
  • 项目类别:
Interdisciplinary protein engineering approach to design high affinity antibodies for flaviviruses
跨学科蛋白质工程方法设计黄病毒高亲和力抗体
  • 批准号:
    10294224
  • 财政年份:
    2018
  • 资助金额:
    $ 31.54万
  • 项目类别:
Interdisciplinary protein engineering approach to design high affinity antibodies for flaviviruses
跨学科蛋白质工程方法设计黄病毒高亲和力抗体
  • 批准号:
    10054160
  • 财政年份:
    2018
  • 资助金额:
    $ 31.54万
  • 项目类别:
Interdisciplinary protein engineering approach to design high affinity antibodies for flaviviruses
跨学科蛋白质工程方法设计黄病毒高亲和力抗体
  • 批准号:
    10507763
  • 财政年份:
    2018
  • 资助金额:
    $ 31.54万
  • 项目类别:
Membrane protein structure modeling with experimental restraints
具有实验限制的膜蛋白结构建模
  • 批准号:
    8459500
  • 财政年份:
    2011
  • 资助金额:
    $ 31.54万
  • 项目类别:
Membrane protein structure modeling with experimental restraints
具有实验限制的膜蛋白结构建模
  • 批准号:
    9189464
  • 财政年份:
    2011
  • 资助金额:
    $ 31.54万
  • 项目类别:
Membrane protein structure modeling with experimental restraints
具有实验限制的膜蛋白结构建模
  • 批准号:
    8247719
  • 财政年份:
    2011
  • 资助金额:
    $ 31.54万
  • 项目类别:
Membrane protein structure modeling with experimental restraints
具有实验限制的膜蛋白结构建模
  • 批准号:
    8655166
  • 财政年份:
    2011
  • 资助金额:
    $ 31.54万
  • 项目类别:
Project 2
项目2
  • 批准号:
    8152458
  • 财政年份:
    2010
  • 资助金额:
    $ 31.54万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.54万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 31.54万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 31.54万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 31.54万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 31.54万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 31.54万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 31.54万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 31.54万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 31.54万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 31.54万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了