Mass Spectrometry Analysis of Membrane Protein Structures and Interactions
膜蛋白结构和相互作用的质谱分析
基本信息
- 批准号:8024059
- 负责人:
- 金额:$ 45.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffinity ChromatographyAlgorithmsArchitectureBinding ProteinsBiologicalBiological ProcessBiologyBuffersCellsCerealsChemicalsChemistryComplexComplex MixturesComputing MethodologiesCoupledCrosslinkerCrystallizationDataData SourcesDatabasesDepositionDevelopmentDimensionsDisciplineDiseaseDrug Delivery SystemsDrug DesignElectron MicroscopyElectrospray IonizationElementsEscherichia coliGasesGoalsGolgi ApparatusHybridsIndividualIonsKnowledgeLeadMacromolecular ComplexesMass Spectrum AnalysisMeasurementMembraneMembrane ProteinsMethodologyMethodsModelingMolecular MachinesMolecular MedicineMultiprotein ComplexesOrganellesPatternPeptidesPhasePhysical ChemistryPropertyProteinsRattusReactionReagentRibosomesRoentgen RaysRough endoplasmic reticulumSamplingScreening procedureShapesSideSoftware ToolsSolutionsSolventsStructureSurfaceSystemTechnologyTestingTissuesWorkX ray diffraction analysisZymogen Granulesbasechromatin remodelingcomputerized toolscrosslinkion mobilitymeetingsmodel developmentnano-electrospraynext generationnovel strategiesphysical propertyprotein complexprotein foldingprotein protein interactionprotein structurerough endoplasmic reticulum membranesmall moleculestoichiometrystructural biologystructural genomicssurfactant
项目摘要
DESCRIPTION (provided by applicant): To perform their biological function, individual proteins associate, often in a transient manner, to form complexes. Understanding the way complexes function is a far-reaching scientific goal for disciplines ranging from molecular medicine to physical chemistry. While high- detail structural information can sometimes be obtained by X-ray diffraction analysis, this requires the availability of a sufficient quantity of homogenous material and definition of suitable crystallization parameters. Both conditions are often difficult to meet for large complexes and for membrane proteins and thus the number of these structures deposited in databases remains relatively low. Alternative methodologies such as electron microscopy (EM) and small angle X- ray scattering (SAXS) allow determination of the surface envelope of complexes of sufficient dimensions but interpretation of these data is aided by detailed knowledge of complex composition, and is limited, in general, to homogeneous complexes. Consequently there is a need to develop new approaches that define subunit stoichiometry, composition, shape, and the dynamics of heterogeneous macromolecular complexes of biomedical importance particularly those in intact biological membranes and organelles. This proposal combines new crosslinker strategies and ion mobility (IM) coupled to mass spectrometry (MS) jointly as high-throughput structural probes for multi-protein complexes, particularly membrane complexes. The development of new crosslinker strategies based on small molecule chemistries consistent with the requirements of MS and IM will overcome many of the existing constraints for analysis of protein complexes. This is a first step towards developing a suite of new high-throughput mass spectrometry-based technologies that will enable the discovery of many previously-unknown multi-protein complex structures and will provide peptide proximity information of use for interpreting structures and providing constraints for protein folding calculations. Importantly, it will also provide a basis for developing methods for following interaction dynamics in protein complexes.
PUBLIC HEALTH RELEVANCE: Membrane proteins represent attractive drug targets but their unique physical properties make their structures difficult to determine and only a small fraction have had their structures determined with sufficient accuracy to be useful which limits opportunities for rational drug design. This proposal will develop high-throughput chemical and physical technologies to determine the membrane topologies of proteins and the interactions between membrane proteins that lead to function. These technologies will provide structural constraints useful in refining 3-D topology diagrams of multi-protein complexes, in de novo protein folding, defining protein-protein interactions and to study the dynamics of protein complexes in normal and diseased tissues to identify the specific protein complexes perturbed in disease.
描述(申请人提供):为了执行它们的生物功能,单个蛋白质通常以一种短暂的方式结合形成复合体。对于从分子医学到物理化学的各种学科来说,了解络合物的作用方式是一个深远的科学目标。虽然X-射线衍射分析有时可以获得高细节的结构信息,但这需要有足够数量的均质材料和定义合适的结晶参数。对于大的复合体和膜蛋白来说,这两个条件通常都很难满足,因此在数据库中存放的这些结构的数量仍然相对较少。电子显微镜(EM)和小角X射线散射(SAXS)等替代方法可以确定足够尺寸的络合物的表面包络,但这些数据的解释有赖于对络合物组成的详细知识,而且一般限于均质络合物。因此,需要开发新的方法来定义具有生物医学意义的多相大分子络合物的亚单位化学计量、组成、形状和动力学,特别是在完整的生物膜和细胞器中。这一建议结合了新的交联剂策略和离子迁移率(IM)与质谱学(MS)的耦合,作为多蛋白质复合体,特别是膜复合体的高通量结构探针。基于符合MS和IM要求的小分子化学的新的交联剂策略的发展将克服蛋白质复合体分析的许多现有限制。这是朝着开发一套基于高通量质谱学的新技术迈出的第一步,这些技术将能够发现许多以前未知的多蛋白质复杂结构,并将提供用于解释结构和为蛋白质折叠计算提供约束的多肽邻近信息。重要的是,它还将为发展跟踪蛋白质复合体中相互作用动力学的方法提供基础。
与公众健康相关:膜蛋白是极具吸引力的药物靶点,但其独特的物理性质使其结构难以确定,而且只有一小部分的结构被足够准确地确定为有用的,这限制了合理药物设计的机会。这项提议将开发高通量的化学和物理技术,以确定蛋白质的膜拓扑结构以及导致功能的膜蛋白质之间的相互作用。这些技术将在精炼多蛋白质复合体的三维拓扑图、从头开始蛋白质折叠、确定蛋白质-蛋白质相互作用以及研究正常和疾病组织中蛋白质复合体的动力学以识别疾病中受干扰的特定蛋白质复合体方面提供有用的结构约束。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip C Andrews其他文献
Enhanced antibacterial activity of dimethyl gallium quinolinolates toward drug-resistant Klebsiella pneumoniae in low iron environments.
在低铁环境中,二甲基喹啉镓对耐药肺炎克雷伯菌的抗菌活性增强。
- DOI:
10.1016/j.jinorgbio.2023.112371 - 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
Rebekah N. Duffin;Philip C Andrews - 通讯作者:
Philip C Andrews
Philip C Andrews的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip C Andrews', 18)}}的其他基金
Engineered Nanodiscs for Structural Mass Spectrometry
用于结构质谱分析的工程纳米圆盘
- 批准号:
10033678 - 财政年份:2020
- 资助金额:
$ 45.33万 - 项目类别:
Engineered Nanodiscs for Structural Mass Spectrometry
用于结构质谱分析的工程纳米圆盘
- 批准号:
10267695 - 财政年份:2020
- 资助金额:
$ 45.33万 - 项目类别:
Engineered Nanodiscs for Structural Mass Spectrometry
用于结构质谱分析的工程纳米圆盘
- 批准号:
10460573 - 财政年份:2020
- 资助金额:
$ 45.33万 - 项目类别:
GOLGI MATRIX ASSEMBLY AND DISASSEMBLY IN THE CELL CYCLE
细胞周期中高尔基体基质的组装和拆卸
- 批准号:
8695730 - 财政年份:2014
- 资助金额:
$ 45.33万 - 项目类别:
Exploration of Molecular Chaperone Complexes During Active Protein Triage
活性蛋白分类过程中分子伴侣复合物的探索
- 批准号:
8853890 - 财政年份:2014
- 资助金额:
$ 45.33万 - 项目类别:
Exploration of Molecular Chaperone Complexes During Active Protein Triage
活性蛋白分类过程中分子伴侣复合物的探索
- 批准号:
9229044 - 财政年份:2014
- 资助金额:
$ 45.33万 - 项目类别:
Exploration of Molecular Chaperone Complexes During Active Protein Triage
活性蛋白分类过程中分子伴侣复合物的探索
- 批准号:
9024586 - 财政年份:2014
- 资助金额:
$ 45.33万 - 项目类别:
GOLGI MATRIX ASSEMBLY AND DISASSEMBLY IN THE CELL CYCLE
细胞周期中高尔基体基质的组装和拆卸
- 批准号:
8902211 - 财政年份:2014
- 资助金额:
$ 45.33万 - 项目类别:
GOLGI MATRIX ASSEMBLY AND DISASSEMBLY IN THE CELL CYCLE
细胞周期中高尔基体基质的组装和拆卸
- 批准号:
9099899 - 财政年份:2014
- 资助金额:
$ 45.33万 - 项目类别:
New Structural Mass Spectrometry Tools Applied to the Mitochondrial Membrane Prot
新的结构质谱工具应用于线粒体膜保护
- 批准号:
8480422 - 财政年份:2013
- 资助金额:
$ 45.33万 - 项目类别:
相似海外基金
Cellular membrane affinity chromatography kit for drug discovery
用于药物发现的细胞膜亲和层析试剂盒
- 批准号:
10506915 - 财政年份:2021
- 资助金额:
$ 45.33万 - 项目类别:
Cellular membrane affinity chromatography kit for drug discovery
用于药物发现的细胞膜亲和层析试剂盒
- 批准号:
10325006 - 财政年份:2021
- 资助金额:
$ 45.33万 - 项目类别:
SBIR Phase I: A New Class of Immobilized Metal Affinity Chromatography Resins
SBIR 第一阶段:一类新型固定金属亲和色谱树脂
- 批准号:
1746198 - 财政年份:2018
- 资助金额:
$ 45.33万 - 项目类别:
Standard Grant
Marine speciation of nickel using immobilized nickel affinity chromatography
使用固定镍亲和色谱法测定镍的海洋形态
- 批准号:
512537-2017 - 财政年份:2017
- 资助金额:
$ 45.33万 - 项目类别:
University Undergraduate Student Research Awards
I-Corps: Commercialization of Immobilized Metal Affinity Chromatography Resins Based on Nanomaterials
I-Corps:基于纳米材料的固定化金属亲和层析树脂的商业化
- 批准号:
1404605 - 财政年份:2014
- 资助金额:
$ 45.33万 - 项目类别:
Standard Grant
Antibody Purification via Affinity Chromatography that Utilizes the Unconventional Nucleotide Binding Site
利用非常规核苷酸结合位点通过亲和色谱法纯化抗体
- 批准号:
1263713 - 财政年份:2013
- 资助金额:
$ 45.33万 - 项目类别:
Continuing Grant
Development of multivalent DNA network based affinity chromatography diagnostics for isolating circulating tumour cells
开发基于多价 DNA 网络的亲和色谱诊断法,用于分离循环肿瘤细胞
- 批准号:
425749-2012 - 财政年份:2012
- 资助金额:
$ 45.33万 - 项目类别:
Postgraduate Scholarships - Master's
Next-Generation Affinity Chromatography with PEGylated Ligands
使用聚乙二醇化配体的新一代亲和色谱法
- 批准号:
1159886 - 财政年份:2012
- 资助金额:
$ 45.33万 - 项目类别:
Standard Grant
Immobilized zirconium ion affinity chromatography for specific enrichment of phosphoproteins
用于磷蛋白特异性富集的固定化锆离子亲和层析
- 批准号:
19560760 - 财政年份:2007
- 资助金额:
$ 45.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating drug discovery using frontal affinity chromatography/mass spectrometry
使用正面亲和色谱/质谱加速药物发现
- 批准号:
234753-2000 - 财政年份:2003
- 资助金额:
$ 45.33万 - 项目类别:
Collaborative Research and Development Grants