Transient catalytic oxygen species in iron enzymes

铁酶中的瞬时催化氧

基本信息

  • 批准号:
    8027289
  • 负责人:
  • 金额:
    $ 28.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-12-15 至 2014-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This project focuses on the structures of transient oxygen intermediates occurring in the catalytic cycles of iron enzymes. Specific focus is on the resolution of atomic vibrations of oxygenic metal ligands and their protonation states using continuous flow resonance Raman spectroscopy. Using a unique, state of the art experimental setup, designed and implemented by the PI, we will examine isotope-difference Raman spectra of species that are formed for a short time following the start of the reactions. The major advantage of our approach is the ability to carry out reactions in liquid samples at temperatures as low as -70¿C with minuscule dead volume. This allows us to slow down the rates of chemical reactions by orders of magnitude and permits close examination of the early phases of the reaction without the need for prohibitive amounts of biological samples. We will examine two classes of iron enzymes. First, we will study transient intermediates that we recently identified in the mono-nuclear non-heme iron and ?-ketoglutarate dependent dioxygenase, TauD. We will characterize these intermediates at various temperatures using excitations across the UV/visible spectrum in order to isolate their spectral signatures. These species will be further investigated using isotope-labeled substrates and medium. A range of synthetic modeling, computational and comparative studies will be carried out that will allow unambiguous identification of the structures of the new species. The second group includes two key bacterial di-iron enzymes. Methane monooxygenase is a powerful analog of cytochrome P450 in higher organisms, which is capable of oxidizing methane to methanol. Its highly oxidized intermediate Q contains an unprecedented FeIVFeIV core. Ribonucleotide reductase plays a key role in DNA replication and is a good model for the corresponding mammalian enzyme. Its highly oxidized intermediate X is responsible for activation of the enzyme by generating a protein radical. Structures of both X and Q have been studied extensively over the last two decades, but remain controversial. Using our novel approach we seek to identify the number, type, and protonation states of oxygenic ligands in X and Q, which is critical for resolving their specific catalytic mechanisms. PUBLIC HEALTH RELEVANCE: Short-lived highly oxidized oxygen-metal complexes are the catalytic centerpieces of many enzymes exhibiting a diverse range of critical physiological functions. Using a unique experimental setup, which us allows to dramatically slow down chemical reactions, we seek to establish the detailed structures of such intermediates. We will investigate three representative enzymes: ribonucleotide reductase is involved in DNA replication and two bacterial oxygenases provide important models of analogous enzymes in mammals.
描述(由申请人提供):该项目的重点是铁酶催化循环中发生的瞬时氧中间体的结构。具体重点是使用连续流共振拉曼光谱的含氧金属配体和它们的质子化状态的原子振动的分辨率。使用一个独特的,最先进的实验装置,由PI设计和实施,我们将检查同位素差异拉曼光谱的物种,形成了一个短的时间后,开始反应。我们的方法的主要优点是能够在低至-70 ° C的温度下在液体样品中进行反应,死体积极小。这使我们能够将化学反应的速率减慢几个数量级,并允许对反应的早期阶段进行仔细检查,而不需要大量的生物样品。我们将研究两类铁酶。首先,我们将研究我们最近在单核非血红素铁和?酮戊二酸依赖性双加氧酶,TauD。我们将在不同的温度下使用整个UV/可见光谱的激发来表征这些中间体,以分离它们的光谱特征。这些物种将进一步研究使用同位素标记的底物和介质。将进行一系列合成建模、计算和比较研究,以便明确识别新物种的结构。第二组包括两种关键的细菌二铁酶。甲烷单加氧酶是高等生物中细胞色素P450的一种类似物,能够将甲烷氧化为甲醇。其高度氧化的中间体Q含有前所未有的FeIVFeIV核。核糖核苷酸还原酶在DNA复制中起着关键作用,是研究哺乳动物相应酶的良好模型。其高度氧化的中间体X负责通过产生蛋白质自由基来激活酶。在过去的二十年里,X和Q的结构都得到了广泛的研究,但仍然存在争议。使用我们的新方法,我们试图确定X和Q中含氧配体的数量,类型和质子化状态,这对于解决其特定的催化机制至关重要。 公共卫生关系:短寿命的高度氧化的氧-金属络合物是许多酶的催化中心,表现出各种重要的生理功能。使用一个独特的实验装置,我们允许显着减缓化学反应,我们试图建立这样的中间体的详细结构。我们将研究三种代表性的酶:核糖核苷酸还原酶参与DNA复制,两种细菌加氧酶提供了哺乳动物中类似酶的重要模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DENIS A PROSHLYAKOV其他文献

DENIS A PROSHLYAKOV的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DENIS A PROSHLYAKOV', 18)}}的其他基金

Transient catalytic oxygen species in iron enzymes
铁酶中的瞬时催化氧
  • 批准号:
    8197814
  • 财政年份:
    2010
  • 资助金额:
    $ 28.62万
  • 项目类别:
Transient catalytic oxygen species in iron enzymes
铁酶中的瞬时催化氧
  • 批准号:
    8596823
  • 财政年份:
    2010
  • 资助金额:
    $ 28.62万
  • 项目类别:
Transient catalytic oxygen species in iron enzymes
铁酶中的瞬时催化氧
  • 批准号:
    8390513
  • 财政年份:
    2010
  • 资助金额:
    $ 28.62万
  • 项目类别:
Protein radicals in O2 reduction by Cytochrome Oxidase
细胞色素氧化酶还原 O2 中的蛋白质自由基
  • 批准号:
    6884652
  • 财政年份:
    2004
  • 资助金额:
    $ 28.62万
  • 项目类别:
Protein radicals in O2 reduction by Cytochrome Oxidase
细胞色素氧化酶还原 O2 中的蛋白质自由基
  • 批准号:
    7068005
  • 财政年份:
    2004
  • 资助金额:
    $ 28.62万
  • 项目类别:
Protein radicals in O2 reduction by Cytochrome Oxidase
细胞色素氧化酶还原 O2 中的蛋白质自由基
  • 批准号:
    7238634
  • 财政年份:
    2004
  • 资助金额:
    $ 28.62万
  • 项目类别:
Protein radicals in O2 reduction by Cytochrome Oxidase
细胞色素氧化酶还原 O2 中的蛋白质自由基
  • 批准号:
    6758994
  • 财政年份:
    2004
  • 资助金额:
    $ 28.62万
  • 项目类别:
Protein radicals in O2 reduction by Cytochrome Oxidase
细胞色素氧化酶还原 O2 中的蛋白质自由基
  • 批准号:
    7425812
  • 财政年份:
    2004
  • 资助金额:
    $ 28.62万
  • 项目类别:

相似海外基金

domino4chem: Semi-biological Domino Catalysis for Solar Chemical Synthesis
domino4chem:用于太阳能化学合成的半生物多米诺催化
  • 批准号:
    EP/X030563/1
  • 财政年份:
    2023
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Research Grant
Pushing Heterogeneous Catalysis into Biological Chemistry via Cofactor Regeneration
通过辅因子再生将多相催化推向生物化学
  • 批准号:
    EP/V048635/1
  • 财政年份:
    2021
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Research Grant
Harnessing Biological Catalysis as Low Energy Solutions to Pesticides & other Micropollutants
利用生物催化作为农药的低能耗解决方案
  • 批准号:
    2868063
  • 财政年份:
    2021
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Studentship
RUI: Development of Unnatural Tryptophan Derivatives to Expand Tryptophan Function and to Study Biological Catalysis
RUI:开发非天然色氨酸衍生物以扩展色氨酸功能并研究生物催化
  • 批准号:
    2003956
  • 财政年份:
    2020
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Standard Grant
RoL: EAGER: DESYN-C Spontaneously Synthesized RNA Protocells for Biological Catalysis
RoL:EAGER:DESYN-C 自发合成的 RNA 原始细胞用于生物催化
  • 批准号:
    1844119
  • 财政年份:
    2019
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Standard Grant
REU Site: Research Opportunities in Biological and Chemical Catalysis
REU 网站:生物和化学催化领域的研究机会
  • 批准号:
    1757078
  • 财政年份:
    2018
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Continuing Grant
Why does Nature use modular enzyme architectures for biological catalysis?
为什么 Nature 使用模块化酶结构进行生物催化?
  • 批准号:
    BB/N013972/1
  • 财政年份:
    2017
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Research Grant
Asymmetric synthesis for asymmetric catalysis and biological activity screening
用于不对称催化和生物活性筛选的不对称合成
  • 批准号:
    2636525
  • 财政年份:
    2017
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Studentship
Sulfido dithiolene complexes modeling molybdenum and tungsten dependent oxiodreductases - investigating synthesis, catalysis and biological activity to elucidate structural uncertainties, structure-function relationships and biosynthesis
磺基二硫烯配合物模拟钼和钨依赖性氧化还原酶 - 研究合成、催化和生物活性,以阐明结构不确定性、结构-功能关系和生物合成
  • 批准号:
    310986441
  • 财政年份:
    2016
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Priority Programmes
Why does Nature use modular enzyme architectures for biological catalysis?
为什么 Nature 使用模块化酶结构进行生物催化?
  • 批准号:
    BB/N013980/1
  • 财政年份:
    2016
  • 资助金额:
    $ 28.62万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了