Microfluidics-assisted display of stretched DNA in the study of DNA repair in viv
体内 DNA 修复研究中微流控辅助显示拉伸 DNA
基本信息
- 批准号:8012002
- 负责人:
- 金额:$ 15.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-03-01 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:AdoptedBase Excision RepairsBiological AssayBiological ModelsCellsChromosomal RearrangementClinicalDNADNA DamageDNA RepairDNA Repair GeneDNA analysisDNA biosynthesisDataDefectDiagnosticDiseaseEarEpidemiologic StudiesEpigenetic ProcessFibroblastsFutureGene Expression ProfileGenetic PolymorphismGenetic VariationGenomeGenome StabilityGenotypeGoalsHeterozygoteHumanInheritedKnowledgeLeadLifeLymphocyteMalignant NeoplasmsMeasuresMethodsMethyl MethanesulfonateMethylationMicrofluidicsModelingMusMutagensMutationOrganismOutcomePatientsPerformancePeripheral Blood Mononuclear CellPhysiologicalProcessProteinsResearchResearch DesignResolutionRiskSamplingSingle Nucleotide PolymorphismSourceSpecimenStagingStretchingSystemTechnologyTestingTherapeuticUV induced DNA damageVariantWorkXRCC1 geneadductbasecancer riskcarcinogenesisclinically relevantdisorder riskdosageepigenetic variationhuman XRCC1 proteinin vivolymphoblastoid cell linerepairedresponsetooltumor
项目摘要
DESCRIPTION (provided by applicant): The goal of the proposed research is to develop and apply a new quantitative method of assaying DNA repair efficiency in vivo, suitable for diagnostic use in readily available patient material. Genomic stability of living cells is continuously threatened from without, by environmental genotoxins as well as from within, by reactive metabolites and enzymatic malfunction. Cells have evolved multiple mechanisms to repair a broad spectrum of damages to DNA, and it is generally thought that small genetic or epigenetic variations in the proficiency of DNA repair may have a profound lifetime impact on genomic stability of an organism. Recent years have seen an exponential increase in studies that connect DNA repair gene single nucleotide polymorphisms (SNPs), expression levels, or methylation status to cancer risk or therapeutic outcome. Understanding the functional, mechanistic significance of the genotypic, epigenetic, or transcriptome signatures found associated with disease risk should deepen our knowledge of the disease process, validate association studies and, ultimately, inform future clinical decisions. In the past several years I have adopted a high resolution, global DNA analysis tool - microfluidics-assisted display of stretched DNA molecules - and used it for a quantitative analysis of DNA replication in vivo and its response to DNA damage in human cells. In this proposal I aim to adapt this technology to a new, thus far unrealized application -- to measure DNA repair in vivo. I will develop, validate, and apply an adaptation of our DNA-stretching technology to study DNA repair using base excision repair (BER) of methyl adducts in mouse primary fibroblasts as a model system. Using cells with dosage or mutation defects in XRCC1, a protein critical for BER, I will determine whether my approach allows measuring relatively small variations in BER efficiency. At the next stage, I will test whether I can apply my technology to measure DNA repair in clinically relevant samples such as human peripheral blood mononuclear cells and human lymphoblastoid cell lines homozygous for the SNPs in XRCC1 that are associated with increased risk of cancer. Finally, I will take steps to determine applicability of my technology to the study of DNA repair systems other than BER.
PUBLIC HEALTH RELEVANCE: The goal of the proposed research is to develop and apply a new quantitative and sensitive method of assaying DNA repair efficiency in living cells, suitable for diagnostic use in samples that can be made available from patients. We believe this assay will contribute to the understanding of the functional significance of the small genetic or epigenetic changes in DNA repair genes that are found associated with an increased risk of cancer, and thus validate associations found in epidemiological studies and inform clinical decisions. In addition, this assay may be adapted to use with clinical specimens of tumors to help devise individualized chemotherapeutic strategies.
描述(由申请人提供):拟议研究的目标是开发和应用一种新的体内DNA修复效率定量测定方法,适用于现成患者材料的诊断用途。 活细胞的基因组稳定性不断受到来自外部的环境基因毒素以及来自内部的活性代谢物和酶功能障碍的威胁。细胞已经进化出多种机制来修复对DNA的广泛损伤,并且通常认为DNA修复能力的小的遗传或表观遗传变异可能对生物体的基因组稳定性具有深远的终身影响。近年来,将DNA修复基因单核苷酸多态性(SNP)、表达水平或甲基化状态与癌症风险或治疗结果联系起来的研究呈指数级增长。了解与疾病风险相关的基因型,表观遗传或转录组特征的功能,机制意义应该加深我们对疾病过程的了解,验证关联研究,并最终为未来的临床决策提供信息。 在过去的几年里,我采用了一种高分辨率的全球DNA分析工具--拉伸DNA分子的微流体辅助显示--并将其用于定量分析体内DNA复制及其对人类细胞中DNA损伤的反应。在这个建议中,我的目标是使这项技术适应一个新的,迄今尚未实现的应用-测量体内DNA修复。我将开发,验证和应用我们的DNA拉伸技术的适应,以研究DNA修复使用碱基切除修复(BER)的甲基加合物在小鼠原代成纤维细胞作为模型系统。使用在BER关键蛋白XRCC 1中具有剂量或突变缺陷的细胞,我将确定我的方法是否允许测量BER效率的相对较小的变化。在下一阶段,我将测试我是否可以应用我的技术来测量临床相关样本中的DNA修复,例如人类外周血单核细胞和人类淋巴母细胞系,这些细胞系与XRCC 1中与癌症风险增加相关的SNP纯合。最后,我将采取措施,以确定我的技术的适用性,以研究DNA修复系统以外的BER。
公共卫生关系:这项研究的目标是开发和应用一种新的定量和灵敏的方法来测定活细胞中的DNA修复效率,适用于从患者那里获得的样本的诊断用途。我们相信这种检测将有助于理解DNA修复基因中的小遗传或表观遗传变化的功能意义,这些变化与癌症风险增加有关,从而验证流行病学研究中发现的相关性,并为临床决策提供信息。此外,该测定可适用于肿瘤的临床标本,以帮助设计个性化的化疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JULIA SIDOROVA其他文献
JULIA SIDOROVA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JULIA SIDOROVA', 18)}}的其他基金
Epigenetics of replication stress in human cells
人类细胞复制应激的表观遗传学
- 批准号:
9270554 - 财政年份:2016
- 资助金额:
$ 15.6万 - 项目类别:
Epigenetics of replication stress in human cells
人类细胞复制应激的表观遗传学
- 批准号:
9900812 - 财政年份:2016
- 资助金额:
$ 15.6万 - 项目类别:
Microfluidics-assisted display of stretched DNA in the study of DNA repair in viv
体内 DNA 修复研究中微流控辅助显示拉伸 DNA
- 批准号:
8265953 - 财政年份:2011
- 资助金额:
$ 15.6万 - 项目类别:
Role of Damage Response in Bone Marrow Failure in Fanconi Anemia
损伤反应在范可尼贫血骨髓衰竭中的作用
- 批准号:
8113396 - 财政年份:2010
- 资助金额:
$ 15.6万 - 项目类别:
Role of Damage Response in Bone Marrow Failure in Fanconi Anemia
损伤反应在范可尼贫血骨髓衰竭中的作用
- 批准号:
7976987 - 财政年份:2010
- 资助金额:
$ 15.6万 - 项目类别: