Improved Functional MRI Using Balanced SSFP and Parallel Transmission

使用平衡 SSFP 和并行传输改进功能 MRI

基本信息

项目摘要

DESCRIPTION (provided by applicant): The goal of this project is to apply a novel MRI-based imaging method to functional brain mapping, with the aim of achieving superior image quality, improved spatial resolution, and potentially improved activation signal. Conventional functional MRI (fMRI) imaging methods employ T2-weighted gradient-recalled echo (GRE) sequences, and suffer from image blur, distortion, and low activation contrast-to-noise ratio (CNR). Balanced steady-state free precession (bSSFP) fMRI has the potential to address these shortcomings, but introduces other sources of artifact and signal loss and has remained at the developmental stage. Using novel bSSFP pulse sequence design and parallel RF transmission, we have shown that robust, artifact-free bSSFP imaging is possible, provided that the B0 inhomogeneity across the imaging field-of-view (FOV) is sufficiently smooth. To assess the applicability of our method to functional imaging in the brain, we will measure whole-brain B0 patterns in volunteers, and use the observed values to optimize the pulse sequence design. The proposed method will be applied to passband bSSFP fMRI studies, and will be compared with conventional GRE BOLD fMRI. If successful, this project will produce an image acquisition sequence that is as flexible and robust as conventional GRE fMRI, but with reduced distortion and blur, potentially more accurate and reliable activation maps, and potentially superior contrast properties. PUBLIC HEALTH RELEVANCE: In this project, we will develop new and improved imaging technology for functional brain mapping experiments. Com- pared with current functional MRI methods, the new method will produce images of the brain with much finer detail.
描述(由申请人提供):该项目的目标是将一种新的基于mri的成像方法应用于功能性脑制图,目的是实现更好的图像质量,提高空间分辨率,并可能改善激活信号。传统的功能磁共振成像(fMRI)成像方法采用t2加权梯度回忆回波(GRE)序列,存在图像模糊、失真和低激活噪比(CNR)等问题。平衡稳态自由进动(bSSFP) fMRI有潜力解决这些缺点,但引入了其他伪影和信号损失来源,并且仍处于发展阶段。利用新颖的bSSFP脉冲序列设计和并行射频传输,我们已经证明,只要成像视场(FOV)上的B0不均匀性足够平滑,就可以实现鲁棒的无伪影bSSFP成像。为了评估我们的方法在脑功能成像中的适用性,我们将测量志愿者的全脑B0模式,并使用观察值来优化脉冲序列设计。所提出的方法将应用于通带bSSFP功能mri研究,并将与传统的GRE BOLD功能mri进行比较。如果成功,该项目将产生一个像传统GRE fMRI一样灵活和健壮的图像采集序列,但减少了失真和模糊,可能更准确和可靠的激活图,并可能具有更好的对比度特性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jon-Fredrik Nielsen其他文献

Jon-Fredrik Nielsen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jon-Fredrik Nielsen', 18)}}的其他基金

A harmonized vendor-agnostic environment for multi-site functional MRI studies
用于多站点功能 MRI 研究的与供应商无关的协调环境
  • 批准号:
    10306940
  • 财政年份:
    2021
  • 资助金额:
    $ 18.16万
  • 项目类别:
A harmonized vendor-agnostic environment for multi-site functional MRI studies
用于多站点功能 MRI 研究的与供应商无关的协调环境
  • 批准号:
    10483153
  • 财政年份:
    2021
  • 资助金额:
    $ 18.16万
  • 项目类别:
Toward layer-specific BOLD fMRI in human cortex at 3T using 3D zoomed-EPI and smallip fast-recovery imaging
使用 3D 缩放 EPI 和 Smallip 快速恢复成像在 3T 下对人类皮质进行层特异性 BOLD fMRI
  • 批准号:
    9031770
  • 财政年份:
    2015
  • 资助金额:
    $ 18.16万
  • 项目类别:
Improved Functional MRI Using Balanced SSFP and Parallel Transmission
使用平衡 SSFP 和并行传输改进功能 MRI
  • 批准号:
    8206729
  • 财政年份:
    2010
  • 资助金额:
    $ 18.16万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
  • 批准号:
    2008772
  • 财政年份:
    2020
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
  • 批准号:
    541812-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 18.16万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759796
  • 财政年份:
    2018
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759807
  • 财政年份:
    2018
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了