Core D5: Phage display synthetic toxin pipeline
核心D5:噬菌体展示合成毒素管道
基本信息
- 批准号:7922839
- 负责人:
- 金额:$ 23.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylcholineAffinityAmino Acid TransporterAmino AcidsBacteriaBindingBiochemical GeneticsBiological FactorsCell surfaceChemicalsChloride ChannelsCloningComputing MethodologiesDiseaseHormone ReceptorIn VitroIon ChannelLaboratoriesLeadLigandsLinkLocalesLocationMapsMembraneMembrane ProteinsMethodologyMethodsModificationMolecularMolecular ConformationOpticsPainPathway interactionsPeptide SynthesisPeptidesPhage DisplayPhysiologyPotassiumPropertyPumpResearchRestRoleScorpionsSiteSnailsSnakesSodium ChannelSpecificitySpidersStructureTechnologyTissuesToxinVariantWorkbasedesignimprovedin vivonoveloperationreceptorreceptor functionscaffoldsensortoolvoltage
项目摘要
The Membrane Protein Structural Dynamics (MPSD) Consortium seeks to achieve mechanistic understanding of membrane protein operation by linking structure, dynamics and function. Membrane proteins change their conformation to operate. Our purpose is to study different conformational states associated with function and to map the pathway that links operating and resting conformations.
Naturally-occurring peptide toxins have become an integral part of research on many membrane proteins. This core employs a new, high-throughput methodology that exploits the structural robustness of natural peptide toxin scaffolds and the power of phage display technology. The purpose is to produce novel synthetic toxins that bind to specific membrane receptors in site and/or state-dependent manner with high affinity and selectivity. This method extends the proven strategy of using high-affinity
peptide ligands to study membrane proteins beyond a handful of natural toxins that have been isolated.
Peptide toxins isolated from spiders, scorpions, snails and snakes have been potent analytic tools to advance understanding of channels, pumps, transporters, and hormone receptors in vitro and in vivo revealing the roles of these membrane proteins in physiology and their mechanisms of action [1]. In the wild, toxins act to immobilize prey; they are potent (pM-nM affinity) and broadly effective on a wide spectrum of membrane targets. Many toxins lock target receptors in unique functional states. Natural
toxins are small (-10-80 amino acids) and are constructed on resilient structural scaffolds that tolerate wide residue diversity to yield products with markedly different properties.
Laboratory synthesis of peptide toxins using bacteria or by de novo chemical methods has proven straightfoHA/ard in most cases. These strategies improve yield compared to isolation of natural products and, significantly, allow incorporation of useful modifications such as residue alterations to improve target specificity or affinity, to alter impact on receptor function, or to attach cargo for delivery to specific cellular and molecular locations [2, 3].
Natural toxins and their synthetic variants have been used to identify membrane receptor subtypes in different tissue and subcellular locales [4]; distinguish roles in physiology and disease [5]; delineate molecular mechanisms [6]; immunopurify target receptors [7]; to treat pain via blockade of ion channels [8]; and, of unique relevance here, to define receptor structure as a function of conformational state using biophysical [9], optical [3] and computational methods [10].
Even though the predicted diversity of the natural peptide "toxome" extrapolated from biochemical and genetic studies is vast (> 11 million), specific targets are not identified for most of the hundreds of toxins that have been isolated and studied. Those toxins that bind to known receptors are often of low affinity or cross-react with related targets. This state-of-affairs is easily understood: neither their purpose in the wild nor non-directed searches for target receptors favor isolation of specific, high-affinity toxins. Here, these problems are avoided by cloning toxins based on their functional attributes.
膜蛋白结构动力学(MPSD)联盟旨在通过连接结构,动力学和功能来实现对膜蛋白操作的机械理解。膜蛋白改变它们的构象来运作。我们的目的是研究与功能相关的不同构象状态,并绘制连接操作和静息构象的途径。
天然存在的肽毒素已成为许多膜蛋白研究的一个组成部分。该核心采用了一种新的高通量方法,该方法利用了天然肽毒素支架的结构稳健性和噬菌体展示技术的力量。其目的是产生以位点和/或状态依赖性方式以高亲和力和选择性结合特异性膜受体的新型合成毒素。该方法扩展了使用高亲和力
肽配体研究膜蛋白超出了少数天然毒素已被分离。
从蜘蛛、蝎子、蜗牛和蛇中分离出的肽毒素是有效的分析工具,可以促进对体外和体内通道、泵、转运蛋白和激素受体的理解,揭示这些膜蛋白在生理学中的作用及其作用机制[1]。在野生环境中,毒素作用于捕食者;它们是有效的(pM-nM亲和力),对广谱的膜靶点广泛有效。许多毒素将靶受体锁定在独特的功能状态。自然
毒素很小(~ 10 - 80个氨基酸),并且构建在弹性结构支架上,所述支架耐受广泛的残基多样性以产生具有显著不同性质的产物。
在大多数情况下,使用细菌或通过从头化学方法的肽毒素的实验室合成已被证明是直接的。与天然产物的分离相比,这些策略提高了产率,并且显著地允许掺入有用的修饰,例如残基改变,以提高靶特异性或亲和力,改变对受体功能的影响,或连接货物以递送至特定的细胞和分子位置[2,3]。
天然毒素及其合成变体已用于鉴定不同组织和亚细胞区域中的膜受体亚型[4];区分生理学和疾病中的作用[5];描绘分子机制[6];免疫纯化靶受体[7];通过阻断离子通道治疗疼痛[8];并且,在此具有独特的相关性,使用生物物理[9]、光学[3]和计算方法[10]将受体结构定义为构象状态的函数。
尽管从生物化学和遗传研究中推断出的天然肽“毒素组”的预测多样性很大(> 1100万),但在已分离和研究的数百种毒素中,大多数毒素的具体靶点尚未确定。那些与已知受体结合的毒素通常具有低亲和力或与相关靶标交叉反应。这种状况很容易理解:无论是它们在野外的目的还是对靶受体的非定向搜索,都不利于分离特异性、高亲和力的毒素。在这里,这些问题是避免克隆毒素的基础上,他们的功能属性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steve A N Goldstein其他文献
Steve A N Goldstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steve A N Goldstein', 18)}}的其他基金
Identification of botanical hHv1 channel blockers as analgesics for neuropathic pain
植物 hHv1 通道阻滞剂作为神经性疼痛镇痛药的鉴定
- 批准号:
10728526 - 财政年份:2023
- 资助金额:
$ 23.6万 - 项目类别:
hHv1 channels in neutrophils and the innate immune inflammatory response
中性粒细胞中的 hHv1 通道和先天免疫炎症反应
- 批准号:
10521974 - 财政年份:2022
- 资助金额:
$ 23.6万 - 项目类别:
hHv1 channels in neutrophils and the innate immune inflammatory response
中性粒细胞中的 hHv1 通道和先天免疫炎症反应
- 批准号:
10677676 - 财政年份:2022
- 资助金额:
$ 23.6万 - 项目类别:
Channels with KCNE Subunits: Conformational Dynamics
具有 KCNE 子单元的通道:构象动力学
- 批准号:
8582069 - 财政年份:2011
- 资助金额:
$ 23.6万 - 项目类别:
Channels with KCNE Subunits: Conformational Dynamics
具有 KCNE 子单元的通道:构象动力学
- 批准号:
8301562 - 财政年份:2011
- 资助金额:
$ 23.6万 - 项目类别:
Channels with KCNE Subunits: Conformational Dynamics
具有 KCNE 子单元的通道:构象动力学
- 批准号:
8384965 - 财政年份:2011
- 资助金额:
$ 23.6万 - 项目类别:
A New Family of Voltage-gated Potassium Channel Regulaory Subunits
电压门控钾通道调节亚基的新家族
- 批准号:
8413639 - 财政年份:2007
- 资助金额:
$ 23.6万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 23.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 23.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 23.6万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 23.6万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 23.6万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 23.6万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 23.6万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 23.6万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 23.6万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 23.6万 - 项目类别:
Continuing Grant