Unsupervised neuronal and perceptual learning of invariant object representation
不变对象表示的无监督神经元和感知学习
基本信息
- 批准号:8020134
- 负责人:
- 金额:$ 2.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-01-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:AgnosiaAlgorithmsAlzheimer&aposs DiseaseAnimalsAntsAreaAutistic DisorderBehavioralBehavioral AssayBrainCategoriesCognitionCognitiveComplexDataDevelopmentDiscriminationDyslexiaElectrodesFaceGoalsHumanImageInferiorLateralLeadLearningLightingMeasuresMemoryModificationNeuronal PlasticityNeuronsNewspapersOutcomePerceptual learningPlayPositioning AttributeProcessReadingRetinaRoleShapesStructureSymptomsTemporal LobeVariantVisionVisualcognitive functionexperiencefusiform face areahuman subjectinsightloved onesnervous system disordernonhuman primateobject perceptionobject recognitionspatiotemporalstatistics
项目摘要
DESCRIPTION (provided by applicant): Visual object recognition (categorization and identification) is one of the most fundamental cognitive functions for our survival. The inferior temporal cortex (IT) is the gateway to brain's decision and memory centers and it conveys visual object and category information in a manner that is largely tolerant ("invariant") to the exact position, size, pose of the object, illumination, and clutter. We recently found that one type of tolerance ~ position tolerance ~ can be rapidly altered by targeted manipulation of the statistics of natural visual experience. This newly discovered type of neuronal learning suggests that IT learns tolerance from the spatiotemporal contiguity of natural visual experience, as different images of the same object tend to play out smoothly on our retina during natural vision. The overarching goal of this proposal is to examine the role of natural visual experience in shaping the IT object representation, and the perceptual consequences of that experience in the same subjects (non-human primates). Animals will acquire experience in an artificially altered visual world where we make specific changes to the spatiotemporal contiguity of their visual experience. Intermittently, we will measure animals' IT neuronal position tolerance and perceptual tolerance by means of single-electrode recording and object discrimination task to track any changes produced by that experience. Our first aim is to examine whether the targeted, experience-driven changes in IT position tolerance is accompanied by specific, stable changes in object perception. Our second aim is to examine whether the naturally acquired spatiotemporal experience instructs learning of tolerance ("invariance") to other identity-preserving image variations (object size, 3D pose). Together, the outcome will elucidate the potentially key role of unsupervised experience in the development of "invariant" object representation. IT projects directly to brain areas responsible for decision, action, and memory, thus an understanding of the IT object representation allows us to understand the basic building blocks of memory and cognition. IT is analogous to structures in the human brain: area Lateral Occipital Complex (LOC), Fusiform Face Area (FFA), and Parahippocampal Place Area (PPA) have been implicated in the processing of objects, faces, and places. Deficits in recognition are symptoms of many neurological disorders: e.g., agnosia, Alzheimer's, autism, dyslexia, thus an understanding of the circuitry underlying the recognition process is likely to provide insight into their conditions.
描述(由申请人提供):视觉物体识别(分类和识别)是我们生存的最基本的认知功能之一。下颞叶皮层(IT)是通往大脑决策和记忆中心的通道,它以一种对物体的确切位置、大小、姿态、照明和杂乱具有很大容忍度(“不变”)的方式传达视觉物体和类别信息。我们最近发现,一种类型的公差-位置公差-可以通过有针对性地操纵自然视觉经验的统计数据而迅速改变。这种新发现的神经元学习类型表明,IT从自然视觉体验的时空连续性中学习耐受性,因为在自然视觉过程中,同一物体的不同图像往往会在我们的视网膜上顺利播放。这个建议的总体目标是研究自然视觉体验在塑造IT对象表示中的作用,以及这种体验在同一受试者(非人类灵长类动物)中的感知后果。动物将在一个人工改变的视觉世界中获得经验,在这个世界中,我们对它们视觉经验的时空连续性进行特定的改变。间歇性地,我们将通过单电极记录和物体辨别任务来测量动物的IT神经元位置耐受性和知觉耐受性,以跟踪该经验产生的任何变化。我们的第一个目标是检查是否有针对性的,经验驱动的变化,IT位置的宽容是伴随着具体的,稳定的变化,对象感知。我们的第二个目标是检查是否自然获得的时空经验指示学习的宽容(“不变性”),以其他身份保持图像的变化(对象大小,3D姿态)。总之,结果将阐明潜在的关键作用,无监督的经验,在发展中的“不变”的对象表示。信息技术直接投射到负责决策、行动和记忆的大脑区域,因此对信息技术对象表征的理解使我们能够理解记忆和认知的基本构建块。它类似于人类大脑中的结构:外侧枕叶复合体(Lateral Occipital Complex,FFA)、梭状面区(Fusiform Face Area,FFA)和海马旁位置区(Parahippocampal Place Area,PPA)参与了物体、面孔和位置的处理。认知缺陷是许多神经系统疾病的症状:例如,失认症,阿尔茨海默氏症,自闭症,阅读障碍,因此,对识别过程中潜在的电路的理解可能会提供对他们的病情的洞察。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nuo Li其他文献
Nuo Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nuo Li', 18)}}的其他基金
Opponent control of action selection in the cortico-basal-ganglia-colliculus loop
皮质-基底节-丘环中动作选择的对手控制
- 批准号:
10633574 - 财政年份:2023
- 资助金额:
$ 2.71万 - 项目类别:
Cortico-cerebellar interactions underlying motor planning and movement
运动规划和运动背后的皮质-小脑相互作用
- 批准号:
10002321 - 财政年份:2019
- 资助金额:
$ 2.71万 - 项目类别:
Cortico-cerebellar interactions underlying motor planning and movement
运动规划和运动背后的皮质-小脑相互作用
- 批准号:
10656397 - 财政年份:2019
- 资助金额:
$ 2.71万 - 项目类别:
Cortico-cerebellar interactions underlying motor planning and movement
运动规划和运动背后的皮质-小脑相互作用
- 批准号:
10237255 - 财政年份:2019
- 资助金额:
$ 2.71万 - 项目类别:
Cortico-cerebellar interactions underlying motor planning and movement
运动规划和运动背后的皮质-小脑相互作用
- 批准号:
10445262 - 财政年份:2019
- 资助金额:
$ 2.71万 - 项目类别:
Unsupervised neuronal and perceptual learning of invariant object representation
不变对象表示的无监督神经元和感知学习
- 批准号:
7806107 - 财政年份:2010
- 资助金额:
$ 2.71万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Continuing Grant