Development of high-throughput, commercially viable, Cell-CT instrument with init
开发具有 init 功能的高通量、商业上可行的 Cell-CT 仪器
基本信息
- 批准号:7925965
- 负责人:
- 金额:$ 262.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAlgorithmsApplications GrantsAspirate substanceAutomationBackBloodBlood capillariesBreastCell Differentiation processCellsCervicalChromatinClassificationClinicalClinical ResearchCodeColonCommunicationComputer softwareContractsCytometryDataData CollectionDetectionDevelopmentDevice DesignsDiagnosticDiseaseDocumentationElectronicsFine-needle biopsyFlow CytometryGastroesophageal reflux diseaseGlassHourHumanImageImage AnalysisImageryIn VitroIndustryLaboratoriesLightingLiquid substanceMalignant NeoplasmsMalignant neoplasm of lungManualsManufacturer NameMarketingMeasuresMicroscopicMicroscopyModificationNatureOpticsOutcomePatientsPerformancePreparationProcessProduct PackagingResearchResolutionRisk AssessmentRotationSafetySamplingScanningSlideSpecificitySpecimenSpeedSputumStaining methodStainsStructureSuspension substanceSuspensionsSystemTarget PopulationsTestingThree-Dimensional ImageThree-Dimensional ImagingThree-dimensional analysisTimeTriageTubeUrineValidationWorkbasecancer riskcapillarycellular imagingcomputerized data processingdesignfeedingfluid flowimage reconstructionimprovedinstrumentinterestlung cancer screeningmillisecondmorphometrynext generationparticleperformance testsprogramsprototypepublic health relevancereconstructionsafety testingsensorsingle cell analysisthree dimensional structuretwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): VisionGate has developed the Cell-CT platform for initial use in the three following markets: 1) Detection and management of gastroesophageal reflux disease (GERD), 2) Lung cancer risk assessment (detection of other cancers, in the pipeline), 3) Academic and pharma research (non-FDA applications). The Cell-CT is a bench-top device designed for in-vitro use in clinical and research laboratories. It is a uniquely powerful, 3D cell-analysis platform that enables the quantitative analysis of the 3D morphometry of chromatin, bio-markers, specific stains and other absorbing and/or fluorescing structures within cells, with the further capability of providing automated early disease detection for any sample with cellular content that can be presented in fluid suspension (e.g., blood, sputum, cervical scrape, breast aspirate, urine, colon brushing, fine needle biopsy). Similar to flow cytometry, cells are injected into a capillary tube. But the tube in the Cell-CT is unique, because it rotates axially as cells flow through it. As the tube rotates, the Cell-CT creates hundreds of microscopic pseudo-projection images (with extended depth of focus) around 3600 rotation of each cell. These 2D images are fed into a back-projection image reconstruction algorithm to generate the 3D image of a cell with isotropic resolution. The Cell-CT is currently in prototype form and is proven to deliver the 3D cell images at high- resolution and high-fidelity. Moreover, the Cell-CT measures and classifies 3D cell features to provide a single cell analysis and a specimen classification. This also has been demonstrated. However, the final hurdle for a commercially viable product is improved throughput. Today's Cell-CT requires 15 minutes just to gather data and process a single cell. A typical specimen might contain thousands of cells, so the current throughput would not be useful in a clinical lab setting where many of the important applications of the Cell-CT would be performed. The development effort to be supported under this grant application will achieve a target speed of 20 minutes to completely process a cell specimen on the Cell-CT, and this is an acceptable throughput for the clinical lab industry. Several instrument modifications have been proposed to increase fluid flow velocity, employ 1D and 2D cytometry to optimally triage target cells for more time consuming 3D imagery, and finalize the instrument design for product packaging. The successful outcome of this work will be a commercial-grade Cell-CT instrument.
PUBLIC HEALTH RELEVANCE: A major impediment to quantitative microscopic analysis of cells is the two-dimensional nature of conventional optical microscopy in interpreting three-dimensional cells that are constrained to lie on a glass slide. The Cell- CT combines the image quality of conventional microscopy with the fluidics of flow cytometry in a unique manner that permits tomographic image reconstruction to compute the true 3D structure of cells. This 3D imaging capability will be applied to sputum for the assessment of GERD and for the early detection of lung cancer, but before the Cell-CT can be utilized commercially, its current low throughput must be improved significantly to allow specimen analysis in minutes rather than hours.
描述(由申请人提供):VisionGate开发了Cell-CT平台,最初用于以下三个市场:1)胃食管反流病(GERD)的检测和管理,2)肺癌风险评估(其他癌症的检测,在管道中),3)学术和制药研究(非FDA应用)。Cell-CT是一种台式设备,设计用于临床和研究实验室的体外使用。它是一个独特的强大的3D细胞分析平台,能够定量分析细胞内染色质、生物标记物、特定染色剂和其他吸收和/或荧光结构的3D形态,并进一步能够为任何具有细胞内容物的样品提供自动化早期疾病检测,这些细胞内容物可以在流体悬浮液中呈现(例如,血液、痰、宫颈刮片、乳房抽吸物、尿液、结肠刷、细针活组织检查)。与流式细胞术类似,细胞被注入毛细管中。但是Cell-CT中的试管是独一无二的,因为当细胞流过它时,它会轴向旋转。当试管旋转时,Cell-CT会在每个细胞旋转3600圈时创建数百个显微镜伪投影图像(具有扩展的焦深)。这些2D图像被馈送到反投影图像重建算法中以生成具有各向同性分辨率的细胞的3D图像。Cell-CT目前处于原型形式,并被证明能够以高分辨率和高保真度提供3D细胞图像。此外,Cell-CT测量和分类3D细胞特征,以提供单细胞分析和样本分类。这一点也得到了证明。然而,商业上可行的产品的最终障碍是提高产量。今天的Cell-CT需要15分钟来收集数据和处理单个细胞。一个典型的样本可能包含数千个细胞,因此目前的通量在临床实验室环境中将是无用的,在临床实验室环境中将执行Cell-CT的许多重要应用。本资助申请支持的开发工作将实现20分钟的目标速度,以便在Cell-CT上完全处理细胞样本,这对于临床实验室行业来说是可以接受的吞吐量。已经提出了几种仪器修改,以增加流体流动速度,采用1D和2D细胞仪来最佳地分类靶细胞,以获得更耗时的3D图像,并最终确定产品包装的仪器设计。这项工作的成功成果将是商业级的Cell-CT仪器。
公共卫生相关性:细胞定量显微分析的主要障碍是传统光学显微镜在解释被限制在载玻片上的三维细胞时的二维性质。Cell-CT以独特的方式将传统显微镜的图像质量与流式细胞术的流体学相结合,允许断层图像重建以计算细胞的真实3D结构。这种3D成像能力将应用于痰液中,以评估GERD和肺癌的早期检测,但在Cell-CT可以商业化使用之前,其目前的低通量必须得到显着改善,以允许在几分钟内而不是几小时内进行标本分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Neumann其他文献
Thomas Neumann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Neumann', 18)}}的其他基金
A liver-on-chip platform to evaluate panels of clinically relevant gene variants for screening of xenobiotic compounds
用于评估临床相关基因变异组以筛选异生化合物的肝脏芯片平台
- 批准号:
10738215 - 财政年份:2023
- 资助金额:
$ 262.17万 - 项目类别:
Rat and Canine Microphysiological Systems of the Kidney Proximal Tubule for Chemical Toxicity Screening
用于化学毒性筛查的大鼠和犬肾近端小管微生理系统
- 批准号:
10363049 - 财政年份:2021
- 资助金额:
$ 262.17万 - 项目类别:
Rat and Canine Microphysiological Systems of the Kidney Proximal Tubule for Chemical Toxicity Screening
用于化学毒性筛查的大鼠和犬肾近端小管微生理系统
- 批准号:
10405579 - 财政年份:2021
- 资助金额:
$ 262.17万 - 项目类别:
Rat and Canine Microphysiological Systems of the Kidney Proximal Tubule for Chemical Toxicity Screening
用于化学毒性筛查的大鼠和犬肾近端小管微生理系统
- 批准号:
10086753 - 财政年份:2020
- 资助金额:
$ 262.17万 - 项目类别:
Development of pharmacokinetic assays utilizing an organ-on-chip model of the human kidney proximal tubule
利用人肾近端小管的器官芯片模型开发药代动力学测定
- 批准号:
10210318 - 财政年份:2019
- 资助金额:
$ 262.17万 - 项目类别:
Development of pharmacokinetic assays utilizing an organ-on-chip model of the human kidney proximal tubule
利用人肾近端小管的器官芯片模型开发药代动力学测定
- 批准号:
10173393 - 财政年份:2019
- 资助金额:
$ 262.17万 - 项目类别:
Organ-on-Chip Approach for Assessing Tissue-specific SARS-CoV-2 Infection and Response to Antiviral Therapy
用于评估组织特异性 SARS-CoV-2 感染和抗病毒治疗反应的器官芯片方法
- 批准号:
10171540 - 财政年份:2019
- 资助金额:
$ 262.17万 - 项目类别:
Microfluidic Platform for Stem Cell Applications
用于干细胞应用的微流控平台
- 批准号:
9247537 - 财政年份:2016
- 资助金额:
$ 262.17万 - 项目类别:
A microfluidic quality-control assay for stem-cell derived therapies
干细胞衍生疗法的微流体质量控制测定
- 批准号:
9045158 - 财政年份:2016
- 资助金额:
$ 262.17万 - 项目类别:
A microfluidic platform for modeling drug transport and cell trafficking across the blood-brain barrier
用于模拟药物跨血脑屏障转运和细胞运输的微流体平台
- 批准号:
9356329 - 财政年份:2015
- 资助金额:
$ 262.17万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 262.17万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 262.17万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 262.17万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 262.17万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 262.17万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 262.17万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 262.17万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 262.17万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 262.17万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 262.17万 - 项目类别:
Continuing Grant














{{item.name}}会员




