Architectural Epigenetics of Embryonic and Induced Pluripotent Stem Cells

胚胎和诱导多能干细胞的结构表观遗传学

基本信息

  • 批准号:
    7820911
  • 负责人:
  • 金额:
    $ 69.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This application addresses broad Challenge Area (14) Stem Cells, and the specific Challenge topic, 14-AG-104: Delineate factors that control the differentiation of pluripotent stem cells. The ability to convert adult somatic cells into induced pluripotent stem (iPS) cells with properties indistinguishable from human embryonic stem (hES) cells represents a major advance in regenerative medicine. In the proposed studies, we will examine the fidelity of (re-)programming in iPS and hES cells that is linked to epigenetic mechanisms controlling pluripotency during self-renewal (Aim 1) and cell fate determination during differentiation (Aim 2). We will characterize architectural epigenetics as the inheritance of chromatin structural information by progeny cells during mitosis that includes the association of (i) lineage-specific and pluripotency-related gene regulatory factors, (ii) variant core (H2A, H2B, H3 and H4) histone proteins, as well as (iii) variant linker histone (H1) proteins with specific target gene promoters during mitosis. We will experimentally address the central hypothesis that the complement of proteins associated with genes in mitotic chromosomes is fundamental to the pluripotency of both iPS and hES cells and that modifications in this mitotic protein/DNA interactome are critical for lineage commitment and are mechanistically coupled with loss of pluripotency. Also, the post-mitotic organization of chromatin micro-environments during interphase will be functionally analyzed to diagnose fidelity of self-renewal and cell cycle progression in pluripotent and lineage-committed cells. Our approach will establish the fundamental basis of pluripotency and (re-)programming from the perspective of architectural epigenetics. We will thus identify principal gene regulatory proteins that influence gene expression following completion of mitotic cell division and define the ability of stem cells for self-renewal and lineage-specific programming. The regulatory parameters and factors identified in the proposed studies can be targeted for biological strategies supporting tissueengineering and regenerative medicine in elderly patients. PUBLIC HEALTH RELEVANCE: Many age-related diseases may be curable by converting normal cells from patients into cells that have the potential to become any other cell type to regenerate a deteriorating tissue or organ (e.g., bone, brain, muscle or cardiovascular cells). It is possible to induce cells to reach this so-called 'pluripotent state', but the fidelity by which this process produces genuine stem cells remains undefined. Our laboratory has shown that transcription factors can remain bound to mitotic chromosomes to define a novel mechanism that can transmit heritable regulatory information ('architectural epigenetics') to progeny after cell division. We will use sophisticated and state-of-the art biochemical, molecular and cellular approaches to define the mechanistic roles of regulatory proteins that are bound to mitotic chromosomes during the cell cycle in na¿ve and programmed stem cells. In addition, we will investigate how these factors contribute to the formation of microscopic domains within the nucleus that mediate gene expression. Our studies will establish how cells can stay pluripotent or become specialized cells from the perspective of architectural epigenetics. Our approaches will identify major factors that control how genes are used immediately after cells complete a round of cell division. Because these factors regulate instructions for cell multiplication through self-renewal or for conversion into specialized cells, they may be particularly suitable for biological strategies supporting tissue-engineering and regenerative medicine in elderly patients.
描述(由应用程序提供):此应用程序解决了广泛的挑战区域(14)干细胞和特定的挑战主题,14-AG-104:控制多能干细胞分化的因素。与人类胚胎干细胞(HES)细胞无法区分的成年体细胞转化为诱导的多能茎(IPS)细胞的能力代表了再生医学的主要进步。在拟议的研究中,我们将研究IPS和HES细胞中(重新)编程的忠诚度,这些效率与控制自我更新过程中多能性的表观遗传机制有关(AIM 1)和分化过程中细胞脂肪的测定(AIM 2)。我们将表征建筑表观遗传学是有丝分裂过程中后代细胞染色质结构信息的遗传,其中包括(i)(i)谱系特异性和多能与基因调节因子的关联,(ii)变体核心(H2A,H2B,H3和H4和H4)蛋白质蛋白(III III)的变体(H2A,H2B,H2B,H3和H4有丝分裂。我们将在实验上解决以下中心假设:与IPS和HES细胞的多能性质有关,与有丝分裂染色体中基因相关的蛋白质的补体是基础的,并且这种有丝分裂蛋白/DNA相互作用组的修饰对于谱系承诺至关重要,并且对谱系的承诺至关重要,并且在机械上与多脂能力丧失有关。同样,在相互阶段期间,染色质微观环境的有序后组织将在功能上进行分析,以诊断多能和谱系组合细胞中自我更新和细胞周期进程的保真度。我们的方法将从建筑表观遗传学的角度建立多能性和(重新)编程的基本基础。因此,我们将确定有丝分裂细胞分裂完成后影响基因表达的主要基因调节蛋白,并定义干细胞自我更新和谱系特异性编程的能力。拟议的研究中确定的调节参数和因素可以针对支持老年患者的组织引力和再生医学的生物学策略。公共卫生相关性:许多与年龄相关的疾病可以通过将正常细胞从患者转化为具有任何其他细胞类型的细胞来治愈,从而使任何其他细胞类型都能再生一种恶化的组织或器官(例如骨,脑,脑,肌肉或心血管细胞)。可以诱导细胞达到所谓的“多能状态”,但该过程产生真正的干细胞的保真度仍然不确定。我们的实验室表明,转录因子可以与有丝分裂染色体结合,以定义一种可以传递可遗传的调节信息(“建筑表观遗传学”)到细胞分裂后的后代的新机制。我们将使用先进和最先进的生化,分子和细胞方法来定义调节蛋白的机械作用,这些调节蛋白在NA¿VE和程序性干细胞的细胞周期中与有丝分裂染色体结合的机械作用。此外,我们将研究这些因素如何促进介导基因表达的细胞核中微观域的形成。我们的研究将确定细胞如何从建筑表观遗传学的角度保持多功能或成为专业细胞。我们的方法将确定控制基因在细胞后立即使用的主要因素完全是一轮细胞分裂。由于这些因素可以通过自我更新或转化为专业细胞进行细胞繁殖的指导,因此它们可能特别适合支持老年患者的组织工程和再生医学的生物学策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gary S. Stein其他文献

TRAP-1, the mitochondrial Hsp90
  • DOI:
    10.1016/j.bbamcr.2011.08.007
  • 发表时间:
    2012-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dario C. Altieri;Gary S. Stein;Jane B. Lian;Lucia R. Languino
  • 通讯作者:
    Lucia R. Languino
Coordinate regulation of multiple histone mRNAs during the cell cycle in HeLa cells.
HeLa 细胞细胞周期中多个组蛋白 mRNA 的协调调节。
  • DOI:
  • 发表时间:
    1983
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    M. Plumb;J. Stein;Gary S. Stein
  • 通讯作者:
    Gary S. Stein
Life Events and the Recurrence of Depression
生活事件和抑郁症的复发
Chromosomal proteins in transformed and neoplastic cells: a review.
转化细胞和肿瘤细胞中的染色体蛋白:综述。
  • DOI:
  • 发表时间:
    1978
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Gary S. Stein;J. Stein;Judith A. Thomson
  • 通讯作者:
    Judith A. Thomson
Gene expression and cell cycle regulation.
基因表达和细胞周期调控。
  • DOI:
  • 发表时间:
    1981
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Steven J. Hochhauser;J. Stein;Gary S. Stein
  • 通讯作者:
    Gary S. Stein

Gary S. Stein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gary S. Stein', 18)}}的其他基金

Administration and Coordination Core
行政及协调核心
  • 批准号:
    10608061
  • 财政年份:
    2021
  • 资助金额:
    $ 69.78万
  • 项目类别:
Project 1: Mitotic Gene Bookmarking as an Epigenetic Mechanism to Maintain the Mammary Epithelial Phenotype
项目 1:有丝分裂基因书签作为维持乳腺上皮表型的表观遗传机制
  • 批准号:
    10380071
  • 财政年份:
    2021
  • 资助金额:
    $ 69.78万
  • 项目类别:
Administration and Coordination Core
行政及协调核心
  • 批准号:
    10380074
  • 财政年份:
    2021
  • 资助金额:
    $ 69.78万
  • 项目类别:
Epigenetic Control and Genome Organization
表观遗传控制和基因组组织
  • 批准号:
    10608052
  • 财政年份:
    2021
  • 资助金额:
    $ 69.78万
  • 项目类别:
Project 1: Mitotic Gene Bookmarking as an Epigenetic Mechanism to Maintain the Mammary Epithelial Phenotype
项目 1:有丝分裂基因书签作为维持乳腺上皮表型的表观遗传机制
  • 批准号:
    10608053
  • 财政年份:
    2021
  • 资助金额:
    $ 69.78万
  • 项目类别:
Epigenetic Control and Genome Organization
表观遗传控制和基因组组织
  • 批准号:
    10380069
  • 财政年份:
    2021
  • 资助金额:
    $ 69.78万
  • 项目类别:
ADMINISTRATIVE
行政的
  • 批准号:
    8601050
  • 财政年份:
    2013
  • 资助金额:
    $ 69.78万
  • 项目类别:
Subnuclear Targeting and Architectural Epigenetics in Cancer Cells
癌细胞的亚核靶向和结构表观遗传学
  • 批准号:
    8601045
  • 财政年份:
    2013
  • 资助金额:
    $ 69.78万
  • 项目类别:
ADMINISTRATIVE
行政的
  • 批准号:
    8052337
  • 财政年份:
    2011
  • 资助金额:
    $ 69.78万
  • 项目类别:
Subnuclear Targeting and Architectural Epigenetics in Cancer Cells
癌细胞的亚核靶向和结构表观遗传学
  • 批准号:
    8052324
  • 财政年份:
    2011
  • 资助金额:
    $ 69.78万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Role of skeletal muscle IPMK in nutrient metabolism and exercise
骨骼肌IPMK在营养代谢和运动中的作用
  • 批准号:
    10639073
  • 财政年份:
    2023
  • 资助金额:
    $ 69.78万
  • 项目类别:
Investigating HDAC3 phosphorylation as an epigenetic regulator of memory formation in the adult and aging brain
研究 HDAC3 磷酸化作为成人和衰老大脑记忆形成的表观遗传调节剂
  • 批准号:
    10752404
  • 财政年份:
    2023
  • 资助金额:
    $ 69.78万
  • 项目类别:
Targeting HNF4-induced thrombo-inflammation in Chagas disease
针对恰加斯病中 HNF4 诱导的血栓炎症
  • 批准号:
    10727268
  • 财政年份:
    2023
  • 资助金额:
    $ 69.78万
  • 项目类别:
Preservation of brain NAD+ as a novel non-amyloid based therapeutic strategy for Alzheimer’s disease
保留大脑 NAD 作为阿尔茨海默病的一种新型非淀粉样蛋白治疗策略
  • 批准号:
    10588414
  • 财政年份:
    2023
  • 资助金额:
    $ 69.78万
  • 项目类别:
Genetic and molecular mechanisms of Xbp-1 mediated salivary gland development and differentiation
Xbp-1介导唾液腺发育和分化的遗传和分子机制
  • 批准号:
    10678146
  • 财政年份:
    2023
  • 资助金额:
    $ 69.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了