CONNJUR: A Software Integration Platform for Biomolecular NMR Spectroscopy

CONNJUR:生物分子核磁共振波谱学软件集成平台

基本信息

项目摘要

DESCRIPTION (provided by applicant): NMR spectroscopy on biological macromolecules generates vast amounts of data and requires intricate knowledge of the molecular system under study for successful analysis of the acquired data. The size and complexity of the molecular systems have grown to the point where software integration is essential to improve the productivity of NMR studies, maximize the efficiency of NMR data analyses, and guarantee the validity of such analyses. In addition, there exist a large number of valuable NMR analysis tools, intricately interdependent in the information they provide and require. Due to this interdependence, a conceptual data model for both raw and analyzed NMR data is required to provide a database and software integration system capable of format conversion amongst the codependent software. In the absence of such a software integration system, much NMR data is considered too complicated to be thoroughly treated and is effectively discarded. Until such a system is developed and distributed, the bulk of the information provided by biological NMR spectroscopy will continue to be lost. The long term goal of this ongoing research project is to make biomolecular NMR analysis faster, easier, more precise, and less expensive by developing and distributing such an integrated software environment, termed CONNJUR. Utilizing a standard three-tier architecture, CONNJUR provides a customizable user interface front-end, a middle tier which wraps third-party NMR software tools, and a relational database back-end for storage of all data and metadata pertaining to a given experimental processing pipeline. The CONNJUR database is implemented from a relational data model of biomolecular NMR spectroscopy, capturing the attributes of raw and derived data, as well as the syntax and semantics of the various data processing steps. Most importantly, the data model stores the interrelationships between the various pieces of data, such that the user can easily keep track of the provenance and lineage of all data elements within the workflow, thus completely documenting all necessary aspects of an experiment. PUBLIC HEALTH RELEVANCE: Project Narrative Biomolecular NMR (Nuclear Magnetic Resonance) is a critically important technique used daily by thousands of researchers for drug discovery and design as well as for the analysis of the biochemical basis of disease. Despite enormous advances in the acquisition hardware, this valuable NMR data is currently processed and analyzed using dozens of independent software tools which are incapable of either sharing data components between each other or of being managed using a single software environment. CONNJUR aims to solve this problem by providing a software integration environment which will increase the speed, volume and accuracy of data analysis and thereby both decrease the cost of NMR research and increase the promise of translating research findings to medical therapies.
描述(由申请人提供):生物大分子的NMR光谱产生大量数据,需要对所研究的分子系统有复杂的了解,才能成功分析所获得的数据。分子系统的规模和复杂性已经发展到这样的程度,即软件集成对于提高NMR研究的生产率,最大限度地提高NMR数据分析的效率并保证此类分析的有效性至关重要。此外,存在大量有价值的NMR分析工具,它们提供和需要的信息错综复杂地相互依赖。由于这种相互依赖性,一个概念性的数据模型,为原始和分析的NMR数据需要提供一个数据库和软件集成系统,能够相互依赖的软件之间的格式转换。在没有这样的软件集成系统的情况下,许多NMR数据被认为太复杂而不能被彻底处理,并且被有效地丢弃。在这样一个系统被开发和分发之前,生物NMR光谱学提供的大部分信息将继续丢失。这个正在进行的研究项目的长期目标是通过开发和分发这样一个集成的软件环境,使生物分子NMR分析更快,更容易,更精确,更便宜。利用标准的三层体系结构,CNOJUR提供了一个可定制的用户界面前端,一个包装第三方NMR软件工具的中间层,以及一个用于存储与给定实验处理管道相关的所有数据和元数据的关系数据库后端。该数据库是从生物分子NMR光谱学的关系数据模型实现的,捕获原始数据和衍生数据的属性,以及各种数据处理步骤的语法和语义。最重要的是,数据模型存储了各种数据之间的相互关系,这样用户就可以轻松地跟踪工作流程中所有数据元素的来源和沿袭,从而完整地记录实验的所有必要方面。公共卫生关系:生物分子NMR(核磁共振)是一种非常重要的技术,每天被成千上万的研究人员用于药物发现和设计以及疾病的生化基础分析。尽管在采集硬件方面取得了巨大的进步,但目前使用数十种独立的软件工具来处理和分析这些有价值的NMR数据,这些软件工具既不能在彼此之间共享数据组件,也不能使用单个软件环境进行管理。ENUJUR旨在通过提供一个软件集成环境来解决这个问题,该环境将提高数据分析的速度,数量和准确性,从而降低NMR研究的成本,并增加将研究结果转化为医学疗法的前景。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL R GRYK其他文献

MICHAEL R GRYK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL R GRYK', 18)}}的其他基金

CONNJUR: A Software Integration Platform for Biomolecular NMR Spectroscopy
CONNJUR:生物分子核磁共振波谱学软件集成平台
  • 批准号:
    8197499
  • 财政年份:
    2008
  • 资助金额:
    $ 29.53万
  • 项目类别:
CONNJUR: A Software Integration Platform for Biomolecular NMR Spectroscopy
CONNJUR:生物分子核磁共振波谱学软件集成平台
  • 批准号:
    7741211
  • 财政年份:
    2008
  • 资助金额:
    $ 29.53万
  • 项目类别:
Data mining the BMRB/PDB for correlations useful for NMR
对 BMRB/P​​DB 进行数据挖掘以获取对 NMR 有用的相关性
  • 批准号:
    7124304
  • 财政年份:
    2005
  • 资助金额:
    $ 29.53万
  • 项目类别:
Data mining the BMRB/PDB for correlations useful for NMR
对 BMRB/P​​DB 进行数据挖掘以获取对 NMR 有用的相关性
  • 批准号:
    6960965
  • 财政年份:
    2005
  • 资助金额:
    $ 29.53万
  • 项目类别:
Database-driven software for biological NMR analysis
用于生物 NMR 分析的数据库驱动软件
  • 批准号:
    7015617
  • 财政年份:
    2005
  • 资助金额:
    $ 29.53万
  • 项目类别:
Database-driven software for biological NMR analysis
用于生物 NMR 分析的数据库驱动软件
  • 批准号:
    6874184
  • 财政年份:
    2005
  • 资助金额:
    $ 29.53万
  • 项目类别:
NMR STRUCTURAL AND BIOPHYSICAL STUDIES OF XRCC1
XRCC1 的 NMR 结构和生物物理研究
  • 批准号:
    6635490
  • 财政年份:
    2000
  • 资助金额:
    $ 29.53万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
  • 批准号:
    2008772
  • 财政年份:
    2020
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
  • 批准号:
    541812-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 29.53万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759796
  • 财政年份:
    2018
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759807
  • 财政年份:
    2018
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了