GNEIMO: Generalized Internal Coordinate Molecular Dynamics Methods
GNEIMO:广义内坐标分子动力学方法
基本信息
- 批准号:8139915
- 负责人:
- 金额:$ 29.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBiological ProcessCaliforniaCommunitiesComputer softwareDevelopmentDrug FormulationsEquationFoundationsFreedomFreezingFrequenciesFutureGenerationsGraphHomology ModelingIllinoisLengthLettersMethodsModelingMolecular ConformationMotionNeurotoxinsPeptidesPerformancePlaguePrincipal InvestigatorProcessProtein Structure InitiativeProteinsPublishingQualifyingResearchRoboticsSamplingSpacecraftStructural ModelsSystemSystematic BiasTechniquesTestingTimeUniversitiesValidationWorkbasecomputer frameworkcomputerized toolsexperiencefasciculin 2improvedmathematical algorithmmolecular dynamicsnanosecondprotein foldingprotein structuresimulationstemstructural biologytool
项目摘要
DESCRIPTION (provided by applicant): Molecular dynamics (MD) simulations is a powerful computational tool in structural biology, widely used for understanding conformational changes in proteins, and folding of peptides. However MD simulations using Cartesian dynamics model is limited by the total simulation time scale being in tens of nanoseconds for large proteins. Biological processes on the other hand need microseconds of simulation time. Internal Coordinate Molecular Dynamics (ICMD) algorithms have been developed to enable larger simulation time-steps and they show great promise in long time scale simulations. Despite their promise, ICMD techniques have made little progress due in large part to the additional mathematical complexity of internal coordinate models. We propose to address and solve the key bottleneck problems with ICMD algorithms. We propose to develop, validate Generalized NEIMO (GNEIMO) ICMD methods that allow freezing of only bond lengths, bond angle and bond lengths and use of ICMD methods for wider conformational search using model coarsening strategies. We also propose to characterize the performance of ICMD algorithms for the applications such as 1) maintaining the native protein structure, 2) refinement of a near native homology structural models, 3) folding of alpha helical and beta hairpin peptides and 4) conformations changes in small proteins. Together, the various studies within this project will provide algorithms and a roadmap for the effective use of ICMD. We will lay the basis for integration of these algorithms with the widely used MD software package NAMD for wider dissemination.
描述(由申请人提供):分子动力学(MD)模拟是结构生物学中强大的计算工具,广泛用于理解蛋白质的构象变化和肽的折叠。然而,使用笛卡尔动力学模型的 MD 模拟受到大蛋白质的总模拟时间尺度为数十纳秒的限制。另一方面,生物过程需要微秒的模拟时间。内坐标分子动力学 (ICMD) 算法的开发是为了实现更大的模拟时间步长,并且它们在长时间尺度模拟中显示出巨大的前景。尽管 ICMD 技术前景广阔,但其进展甚微,这在很大程度上是由于内部坐标模型的额外数学复杂性。我们建议用 ICMD 算法来解决和解决关键瓶颈问题。我们建议开发、验证广义 NEIMO (GNEIMO) ICMD 方法,该方法允许仅冻结键长、键角和键长,并使用 ICMD 方法使用模型粗化策略进行更广泛的构象搜索。我们还建议表征 ICMD 算法在以下应用中的性能:1)维持天然蛋白质结构,2)细化近乎天然的同源结构模型,3)α螺旋和β发夹肽的折叠以及4)小蛋白质的构象变化。该项目中的各种研究共同将为 ICMD 的有效使用提供算法和路线图。我们将为这些算法与广泛使用的 MD 软件包 NAMD 的集成奠定基础,以实现更广泛的传播。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GneimoSim: a modular internal coordinates molecular dynamics simulation package.
GneimoSim:模块化内坐标分子动力学模拟软件包。
- DOI:10.1002/jcc.23743
- 发表时间:2014
- 期刊:
- 影响因子:3
- 作者:Larsen,AdrienB;Wagner,JeffreyR;Kandel,Saugat;Salomon-Ferrer,Romelia;Vaidehi,Nagarajan;Jain,Abhinandan
- 通讯作者:Jain,Abhinandan
Advanced techniques for constrained internal coordinate molecular dynamics.
- DOI:10.1002/jcc.23200
- 发表时间:2013-04-30
- 期刊:
- 影响因子:3
- 作者:Wagner, Jeffrey R.;Balaraman, Gouthaman S.;Niesen, Michiel J. M.;Larsen, Adrien B.;Jain, Abhinandan;Vaidehi, Nagarajan
- 通讯作者:Vaidehi, Nagarajan
Structure refinement of protein low resolution models using the GNEIMO constrained dynamics method.
- DOI:10.1021/jp209657n
- 发表时间:2012-03-01
- 期刊:
- 影响因子:3.3
- 作者:Park, In-Hee;Gangupomu, Vamshi;Wagner, Jeffrey;Jain, Abhinandan;Vaidehi, Nagarajan
- 通讯作者:Vaidehi, Nagarajan
Internal coordinate molecular dynamics: a foundation for multiscale dynamics.
- DOI:10.1021/jp509136y
- 发表时间:2015-01-29
- 期刊:
- 影响因子:0
- 作者:Vaidehi N;Jain A
- 通讯作者:Jain A
Fixman compensating potential for general branched molecules.
Fixman 补偿一般支链分子的潜力。
- DOI:10.1063/1.4851315
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Jain,Abhinandan;Kandel,Saugat;Wagner,Jeffrey;Larsen,Adrien;Vaidehi,Nagarajan
- 通讯作者:Vaidehi,Nagarajan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nagarajan Vaidehi其他文献
Nagarajan Vaidehi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nagarajan Vaidehi', 18)}}的其他基金
Structural dynamics underlying GPCR-G protein selectivity
GPCR-G 蛋白选择性的结构动力学
- 批准号:
10379423 - 财政年份:2017
- 资助金额:
$ 29.53万 - 项目类别:
Structural dynamics underlying GPCR-G protein selectivity
GPCR-G 蛋白选择性的结构动力学
- 批准号:
10559695 - 财政年份:2017
- 资助金额:
$ 29.53万 - 项目类别:
Computationally Guided Design of Thermostable mutants of Neurotensin receptor1
神经降压素受体 1 热稳定突变体的计算引导设计
- 批准号:
8476236 - 财政年份:2011
- 资助金额:
$ 29.53万 - 项目类别:
Computationally Guided Design of Thermostable mutants of Neurotensin receptor1
神经降压素受体 1 热稳定突变体的计算引导设计
- 批准号:
8327192 - 财政年份:2011
- 资助金额:
$ 29.53万 - 项目类别:
Computationally Guided Design of Thermostable mutants of GPCR-transducer complexes
GPCR-转导复合物热稳定突变体的计算引导设计
- 批准号:
9279145 - 财政年份:2011
- 资助金额:
$ 29.53万 - 项目类别:
Computationally Guided Design of Thermostable mutants of Neurotensin receptor1
神经降压素受体 1 热稳定突变体的计算引导设计
- 批准号:
8084826 - 财政年份:2011
- 资助金额:
$ 29.53万 - 项目类别:
Computationally Guided Design of Thermostable mutants of GPCR-transducer complexes
GPCR-转导复合物热稳定突变体的计算引导设计
- 批准号:
8913703 - 财政年份:2011
- 资助金额:
$ 29.53万 - 项目类别:
GNEIMO: Generalized Internal Coordinate Molecular Dynamics Methods
GNEIMO:广义内坐标分子动力学方法
- 批准号:
7901558 - 财政年份:2008
- 资助金额:
$ 29.53万 - 项目类别:
GNEIMO: Generalized Internal Coordinate Molecular Dynamics Methods
GNEIMO:广义内坐标分子动力学方法
- 批准号:
7389080 - 财政年份:2008
- 资助金额:
$ 29.53万 - 项目类别:
GNEIMO: Generalized Internal Coordinate Molecular Dynamics Methods
GNEIMO:广义内坐标分子动力学方法
- 批准号:
7670409 - 财政年份:2008
- 资助金额:
$ 29.53万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 29.53万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 29.53万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 29.53万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 29.53万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 29.53万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 29.53万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 29.53万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 29.53万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 29.53万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 29.53万 - 项目类别:
Research Grant