Structural and functional studies of urea channels
尿素通道的结构和功能研究
基本信息
- 批准号:8019537
- 负责人:
- 金额:$ 21.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-02-01 至 2013-01-31
- 项目状态:已结题
- 来源:
- 关键词:AQP9 geneActinobacillus pleuropneumoniaeAddressAdipocytesAmidesAntibioticsArsenicArsenic PoisoningArsenitesBiochemicalBiologicalBostonCellsCharacteristicsCollaborationsCrystallizationCrystallographyDataData SetDevelopmentDiureticsE coli GlpF proteinEating DisordersElectron MicroscopyElectronsEukaryotaFamilyFastingGluconeogenesisGlycerolGoalsHelicobacter pyloriHomologous GeneHomology ModelingHumanImageIndividualIngestionInsectaIsraelKineticsLeadLiposomesLiverMammalsMeasurementMediatingMedical centerMembraneMembrane ProteinsMicrobeMicroscopicModelingMolecularNamesNitrogenPatternPhasePhysiologicalPlayPrincipal InvestigatorProteinsRattusRecombinant ProteinsRecombinantsResearchResolutionRoleSequence HomologySourceSpecificitySpecimenStructureStructure-Activity RelationshipSubstrate SpecificityTechniquesTestingToxic effectTransport ProcessUreaUropathogenic E. coliWaterWorkX-Ray Crystallographyabstractingbaseelectron crystallographyimprovedinhibitor/antagonistinterestmembernovelpathogenprogramsprotein functionproteoliposomesreconstitutionresearch studysalt balancesolutetooltwo-dimensionalurea transporterwater channel
项目摘要
Abstract
Urea is the main catabolite in mammals and an important nitrogen source for many
microbes. This proposal focuses on structural and functional studies of membrane
proteins that facilitate transmembrane urea transport, specifically members of the
aquaporin (AQP), urea transporter (UT), and urea/amide channel (UAC) families. We
are studying AQP9, which has the broadest substrate specificity among all known AQPs,
UreI from Helicobacter pylori, a member of the UAC family, and the urea transporters
UT-Apl from Actinobacillus pleuropneumoniae and UT-Ec from the uropathogenic E. coli
strain 536. The Specific Aims of this proposal are: (i) to determine the transport
kinetics of AQP9 for various solutes. We will perform stopped-flow measurements on
AQP9 proteoliposomes to characterize the transport kinetics for various solutes,
including water, glycerol and larger solutes. The results will determine the physiological
relevance of the AQP9-mediated transport of these solutes. (ii) to solve the structure
of AQP9. We have already produced very well ordered two-dimensional (2D) crystals of
AQP9 that diffract to about 3.8 ¿ resolution. We will continue to pursue electron
crystallography of 2D crystals, but also x-ray crystallography of 3D crystals, to produce
an atomic model of AQP9. (iii) to determine the transport kinetics of UreI, UT-Apl
and UT-Ec for urea and water. We will perform stopped-flow measurements on
proteoliposomes containing these urea channels to characterize their transport kinetics.
The results will reveal similarities and differences in the function of these proteins. (iv)
to obtain structural information on UreI, UT-Apl and UT-Ec. We will use biochemical
and electron microscopic techniques to determine the oligomeric state of these urea
channels. Our ultimate goal is to produce crystals (2D or 3D) of these proteins that will
be suitable for structure determination by electron or x-ray crystallography. Relevance
AQP9-mediated glycerol transport out of adipocytes and into the liver may be important
to support gluconeogenesis in the fasted state. AQP9 is also permeated by arsenite and
might contribute to the toxicity of arsenic ingestion. AQP9 may thus be a target for
treating pathophysiological conditions resulting from eating disorders and arsenic
poisoning. The availability of a structure for a UT might aid the development of novel
diuretic compounds that selectively block urea reabsorption without interfering with the
salt balance. UTs also play a crucial role in the survival of human pathogens. An atomic
structure of the UT-Apl could thus potentially be used to develop specific inhibitors of
bacterial urea transport. Transporters of the UAC family could be particularly potent
targets for new antibiotics, since they do not have any homologs in eukaryotes.
摘要
尿素是哺乳动物体内的主要分解代谢产物,也是许多动物的重要氮源。
微生物。这项建议侧重于膜的结构和功能研究。
促进尿素跨膜转运的蛋白质,特别是
水通道蛋白(AQP)、尿素转运蛋白(UT)和尿素/酰胺通道(UAC)家族。我们
正在研究AQP9,它是所有已知的AQP中具有最广泛底物特异性的,
幽门螺杆菌Uac家族成员UreI和尿素转运蛋白
胸膜肺炎放线杆菌的UT-APL和致尿性大肠杆菌的UT-EC
菌株536。这项建议的具体目的是:(一)确定交通工具
AQP9在不同溶质中的动力学我们将进行停流测量
AQP9蛋白脂质体用于表征各种溶质的转运动力学,
包括水、甘油和更大的溶质。结果将决定生理学上的
AQP9介导的这些溶质运输的相关性。(二)着力破解结构性难题
AQP9。我们已经生产出了非常有序的二维(2D)晶体
AQP9衍射率约为3.8?分辨率。我们将继续追求电子
2D晶体的结晶学,也是3D晶体的X射线结晶学,以生产
AQP9的原子模型。(Iii)测定UreI、UT-APL的转运动力学
尿素和水的UT-EC。我们将进行停流测量
含有这些尿素通道的蛋白质脂质体来表征它们的转运动力学。
结果将揭示这些蛋白质在功能上的相似和不同。(四)
获取UreI、UT-APL和UT-EC的结构信息。我们将使用生化技术
和电子显微镜技术来确定这些尿素的低聚状态
频道。我们的最终目标是生产这些蛋白质的晶体(2D或3D),
适用于电子或X射线结晶学结构测定。相关性
AQP9介导的甘油从脂肪细胞到肝脏的转运可能是重要的
以支持禁食状态下的糖异生。AQP9也被亚砷酸盐和
可能与砷摄入的毒性有关。因此,AQP9可能成为
治疗饮食失调和砷引起的病理生理状况
下毒了。UT结构的可用性可能有助于小说的发展
利尿剂化合物,选择性地阻止尿素的重吸收,而不干扰
盐分平衡。UTS在人类病原体的生存中也起着至关重要的作用。一颗原子弹
因此,UT-APL的结构可能被用来开发特定的抑制剂
细菌尿素运输。UAC家族的转运蛋白可能特别强大
新抗生素的目标,因为它们在真核生物中没有任何同系物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THOMAS WALZ其他文献
THOMAS WALZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THOMAS WALZ', 18)}}的其他基金
Elucidating the gating mechanisms of bacterial mechanosensitive channels
阐明细菌机械敏感通道的门控机制
- 批准号:
10583324 - 财政年份:2023
- 资助金额:
$ 21.55万 - 项目类别:
Elucidating the gating mechanisms of bacterial mechanosensitive channels
阐明细菌机械敏感通道的门控机制
- 批准号:
10796256 - 财政年份:2023
- 资助金额:
$ 21.55万 - 项目类别:
Structural and functional studies of urea channels
尿素通道的结构和功能研究
- 批准号:
7351221 - 财政年份:2008
- 资助金额:
$ 21.55万 - 项目类别:
Structural and functional studies of urea channels
尿素通道的结构和功能研究
- 批准号:
7555922 - 财政年份:2008
- 资助金额:
$ 21.55万 - 项目类别:
Structural and functional studies of urea channels
尿素通道的结构和功能研究
- 批准号:
7762749 - 财政年份:2008
- 资助金额:
$ 21.55万 - 项目类别:
Structure and Function of Lens Membrane Proteins
晶状体膜蛋白的结构和功能
- 批准号:
7342072 - 财政年份:2004
- 资助金额:
$ 21.55万 - 项目类别:
Structure and Function of Lens Membrane Proteins
晶状体膜蛋白的结构和功能
- 批准号:
7171776 - 财政年份:2004
- 资助金额:
$ 21.55万 - 项目类别:
相似海外基金
Interaction of Actinobacillus pleuropneumoniae with host cells
胸膜肺炎放线杆菌与宿主细胞的相互作用
- 批准号:
RGPIN-2016-04203 - 财政年份:2021
- 资助金额:
$ 21.55万 - 项目类别:
Discovery Grants Program - Individual
Interaction of Actinobacillus pleuropneumoniae with host cells
胸膜肺炎放线杆菌与宿主细胞的相互作用
- 批准号:
RGPIN-2016-04203 - 财政年份:2020
- 资助金额:
$ 21.55万 - 项目类别:
Discovery Grants Program - Individual
China Partnering Award: Imperial College London - China collaboration on Actinobacillus pleuropneumoniae vaccines, diagnostics, and pathogenesis
中国合作奖:伦敦帝国理工学院-中国在胸膜肺炎放线杆菌疫苗、诊断和发病机制方面的合作
- 批准号:
BB/S019901/1 - 财政年份:2019
- 资助金额:
$ 21.55万 - 项目类别:
Research Grant
Interaction of Actinobacillus pleuropneumoniae with host cells
胸膜肺炎放线杆菌与宿主细胞的相互作用
- 批准号:
RGPIN-2016-04203 - 财政年份:2019
- 资助金额:
$ 21.55万 - 项目类别:
Discovery Grants Program - Individual
Interaction of Actinobacillus pleuropneumoniae with host cells
胸膜肺炎放线杆菌与宿主细胞的相互作用
- 批准号:
RGPIN-2016-04203 - 财政年份:2018
- 资助金额:
$ 21.55万 - 项目类别:
Discovery Grants Program - Individual
Interaction of Actinobacillus pleuropneumoniae with host cells
胸膜肺炎放线杆菌与宿主细胞的相互作用
- 批准号:
RGPIN-2016-04203 - 财政年份:2017
- 资助金额:
$ 21.55万 - 项目类别:
Discovery Grants Program - Individual
Interaction of Actinobacillus pleuropneumoniae with host cells
胸膜肺炎放线杆菌与宿主细胞的相互作用
- 批准号:
RGPIN-2016-04203 - 财政年份:2016
- 资助金额:
$ 21.55万 - 项目类别:
Discovery Grants Program - Individual
Role of lipopolysaccharide of actinobacillus pleuropneumoniae in biofilm formation and pathogenesis
胸膜肺炎放线杆菌脂多糖在生物膜形成和发病机制中的作用
- 批准号:
3428-2011 - 财政年份:2015
- 资助金额:
$ 21.55万 - 项目类别:
Discovery Grants Program - Individual
Role of lipopolysaccharide of actinobacillus pleuropneumoniae in biofilm formation and pathogenesis
胸膜肺炎放线杆菌脂多糖在生物膜形成和发病机制中的作用
- 批准号:
3428-2011 - 财政年份:2014
- 资助金额:
$ 21.55万 - 项目类别:
Discovery Grants Program - Individual
Role of lipopolysaccharide of actinobacillus pleuropneumoniae in biofilm formation and pathogenesis
胸膜肺炎放线杆菌脂多糖在生物膜形成和发病机制中的作用
- 批准号:
3428-2011 - 财政年份:2013
- 资助金额:
$ 21.55万 - 项目类别:
Discovery Grants Program - Individual