Targeted disruption the enzymes of O-GlcNAc cycling: Animal models of Disease

靶向破坏 O-GlcNAc 循环酶:疾病动物模型

基本信息

项目摘要

The hexosamine signaling pathway terminating in O-GlcNAc cycling has been implicated in cellular signaling cascades and regulation of transcription and translation. We seek to understand the biological functions of O-GlcNAc-dependent signaling and to determine whether altered O-GlcNAc metabolism contributes to human diseases such as diabetes mellitus and neurodegeneration. Transgenic overexpression of an isoform of OGT in muscle and fat induced Insulin resistance and Hyperleptinemia in mice. These data demonstrate a central role for OGT in the insulin and leptin-signaling cascades. The findings suggest a more general role for glycan-dependent signaling in nutrient sensing and the pathogenesis of type-2 diabetes. Using reverse genetics, knockout, and other mouse transgenic models, we are currently exploring the role of the enzymes of O-GlcNAc metabolism in signal transduction and the pathogenesis of diabetes mellitus. Using cre/lox technology, we have made knockout and hypomorphic alleles of OGT in the mouse. OGT knockout animals are embryonic lethal. However, mouse embryo fibroblasts derived from these mice are being used to examine the insulin signaling cascade. Embryonic stem cells with a hypomorphic OGT allele are used for in vitro differentiation into a number of lineages including the pancreatic Beta cells. Interestingly, Beta cells derived from the hypomorphic OGT allele produce much more insulin mRNA than control cells suggesting a role for OGT in regulating insulin secretion. Recently, the human O-GlcNAcase gene was identified as a non-insulin dependent diabetes mellitus (NIDDM) susceptibility locus in Mexican Americans. We have now targeted the O-GlcNAcase gene (MGEA5) in the mouse. Using tissue specific promoters to drive expression of cre-recombinase in various target tissues, we are examining the physiological impact of O-GlcNAcase disruption. Knockout of O-GlcNAcase during early development leads to embryonic cell death. Fibroblasts derived from these knockout animals show dramatically altered O-GlcNAc levels and slower growth. Tissue-specific disruptions of the O-GlcNAcase gene are in progress. Our goal is to understand how interference with O-GlcNAc cycling may impact nutrient sensing pathways deregulated in type-2 diabetes and neurodegeneration. Analysis is being pursued in three model systems: fly, mouse and nematode. To examine the function of hexosamine signaling in a more genetically amenable organism, we have examined null alleles of OGT and the O-GlcNAcase in Caenorhabditis elegans that are viable and fertile. In nematodes, a highly conserved insulin-like signaling cascade regulates macronutrient storage, longevity and dauer formation. We demonstrate that the OGT and OGA null mutants exhibit striking metabolic changes manifested in an elevation in trehalose levels and glycogen stores with a concomitant decrease in triglycerides levels. The OGT knockout suppresses dauer larvae formation induced by a temperature sensitive allele of the insulin-like receptor gene daf-2. The OGA knockout enhances dauer formation suggesting the development of insulin resistance in the absence of O-GlcNAcase activity. Our findings demonstrate that OGT and O-GlcNAcase modulate insulin action in C. elegans and provide a unique genetic model for examining the role of O-GlcNAc in cellular signaling, insulin resistance and obesity. These studies have been extended by examining the transcriptional changes associated with interference of O-GlcNAc cycling in C. elegans. Both expression microarrays and chromatin immunoprecipitation studies argue that defects in O-GlcNAc cycling dramatically impact gene expression. It is likely that these transcriptional changes are normally linked to the nutrient sensing hexosamine-signaling pathway. Our data point to an impact on stem cell fate, which is linked to germline stem cells in C. elegans. Caenorhabditis elegans is also an excellent model system in which to examine neurodegeneration. The hexosamine signaling pathway terminating in O-GlcNAc addition has been proposed to play a key role in neurodegeneration. In these disorders, the proteins accumulating as aggregates such as tau and amyloid precursor protein are heavily modified with O-GlcNAc and are also phosphorylated. To examine the role of O-GlcNAc in tauopathy we have developed a C. elegans model of tauopathy in which the enzymes of hexosamine signaling have been systematically deleted. This strategy is based on previous work demonstrating the utility of C. elegans in modeling the one form of tauopathy, FTDP-17. We find that the loss of OGT-1, the O-GlcNAc transferase protects the nematode from human tau-induced neuropathy. This protection is associated with a decrease in the hyperphosphorylation of tau associated with aggregate formation (See Figure 2). This genetically amenable model of tauopathy is being exploited to examine how removal of OGT-1 exerts its protective effect on tau-induced neuropathy.
终止于O-GlcNAc循环的己糖胺信号通路与细胞信号级联以及转录和翻译调控有关。我们试图了解O-GlcNAc依赖性信号的生物学功能,并确定O-GlcNAc代谢的改变是否与糖尿病和神经变性等人类疾病有关。OGT在肌肉和脂肪中的转基因过表达诱导小鼠胰岛素抵抗和高瘦素血症。这些数据证明了OGT在胰岛素和瘦素信号级联反应中的核心作用。研究结果表明,在2型糖尿病的营养感知和发病机制中,聚糖依赖信号的作用更为普遍。利用反向遗传学、基因敲除等小鼠转基因模型,我们目前正在探索O-GlcNAc代谢酶在糖尿病信号转导和发病机制中的作用。利用cre/lox技术,我们在小鼠体内制备了OGT的基因敲除和半胚等位基因。OGT敲除的动物是胚胎致死的。然而,来自这些小鼠的小鼠胚胎成纤维细胞被用于检查胰岛素信号级联。具有半胚性OGT等位基因的胚胎干细胞被用于体外分化成许多谱系,包括胰腺β细胞。有趣的是,源自半胚性OGT等位基因的β细胞比对照细胞产生更多的胰岛素mRNA,这表明OGT在调节胰岛素分泌方面发挥了作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John A. Hanover其他文献

82 - Coronary Atherosclerosis in Females with Turner Syndrome
  • DOI:
    10.1016/j.jcjd.2017.08.090
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Fady Hannah-Shmouni;Marissa Schoepp;Khaled Z. Abd-Elmoniem;Jatin Matta;Ahmed Ghanem;John A. Hanover;Ahmed M. Gharib
  • 通讯作者:
    Ahmed M. Gharib
emO/em-GlcNAcylation regulates OTX2’s proteostasis
O-GlcNAc 化修饰调控 OTX2 的蛋白质稳态
  • DOI:
    10.1016/j.isci.2023.108184
  • 发表时间:
    2023-11-17
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Eugenia Wulff-Fuentes;Jeffrey Boakye;Kaeley Kroenke;Rex R. Berendt;Carla Martinez-Morant;Michaela Pereckas;John A. Hanover;Stephanie Olivier-Van Stichelen
  • 通讯作者:
    Stephanie Olivier-Van Stichelen
O-GlcNAc in cancer: An Oncometabolism-fueled vicious cycle
  • DOI:
    10.1007/s10863-018-9751-2
  • 发表时间:
    2018-03-29
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    John A. Hanover;Weiping Chen;Michelle R. Bond
  • 通讯作者:
    Michelle R. Bond
The cellular entry of EGF and transferrin: a problem in intracellular sorting.
EGF 和转​​铁蛋白的细胞进入:细胞内分选的问题。
linking metabolism to epigenetics through O-GlcNAcylation
通过 O-GlcNAc 化将代谢与表观遗传学联系起来
  • DOI:
    10.1038/nrm3334
  • 发表时间:
    2012-04-23
  • 期刊:
  • 影响因子:
    90.200
  • 作者:
    John A. Hanover;Michael W. Krause;Dona C. Love
  • 通讯作者:
    Dona C. Love

John A. Hanover的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John A. Hanover', 18)}}的其他基金

ROLE OF INTRACELLULAR TRAFFIC IN HIV INFECTION
细胞内运输在 HIV 感染中的作用
  • 批准号:
    6432190
  • 财政年份:
  • 资助金额:
    $ 50.73万
  • 项目类别:
Glycan-Dependent Signaling and Regulation of Nuclear Tra
核转录的聚糖依赖性信号传导和调节
  • 批准号:
    6810570
  • 财政年份:
  • 资助金额:
    $ 50.73万
  • 项目类别:
Enzymes of O-GlcNAc cycling linked to type-2 diabetes and neurodegeneration
O-GlcNAc 循环酶与 2 型糖尿病和神经退行性疾病相关
  • 批准号:
    8349876
  • 财政年份:
  • 资助金额:
    $ 50.73万
  • 项目类别:
Targeted disruption the enzymes of O-GlcNAc cycling: Animal models of Disease
靶向破坏 O-GlcNAc 循环酶:疾病动物模型
  • 批准号:
    8939652
  • 财政年份:
  • 资助金额:
    $ 50.73万
  • 项目类别:
Genomics Core Facility
基因组学核心设施
  • 批准号:
    9148976
  • 财政年份:
  • 资助金额:
    $ 50.73万
  • 项目类别:
Enzymes of O-GlcNAc cycling linked to type-2 diabetes and neurodegeneration
O-GlcNAc 循环酶与 2 型糖尿病和神经退行性疾病相关
  • 批准号:
    9356164
  • 财政年份:
  • 资助金额:
    $ 50.73万
  • 项目类别:
Role Of The Nuclear Envelope In Intracellular Protein So
核膜在细胞内蛋白质中的作用
  • 批准号:
    6535236
  • 财政年份:
  • 资助金额:
    $ 50.73万
  • 项目类别:
Calmodulin-driven Nuclear Trafficking linked to diabetes and insulin signaling
钙调蛋白驱动的核贩运与糖尿病和胰岛素信号传导有关
  • 批准号:
    10697787
  • 财政年份:
  • 资助金额:
    $ 50.73万
  • 项目类别:
Enzymes of O-GlcNAc cycling linked to type-2 diabetes and neurodegeneration
O-GlcNAc 循环酶与 2 型糖尿病和神经退行性疾病相关
  • 批准号:
    8741536
  • 财政年份:
  • 资助金额:
    $ 50.73万
  • 项目类别:
Targeted disruption the enzymes of O-GlcNAc cycling: Animal models of Disease
靶向破坏 O-GlcNAc 循环酶:疾病动物模型
  • 批准号:
    10008682
  • 财政年份:
  • 资助金额:
    $ 50.73万
  • 项目类别:

相似海外基金

Tungsten Biocatalysis - Heavy Metal Enzymes for Sustainable Industrial Biocatalysis
钨生物催化 - 用于可持续工业生物催化的重金属酶
  • 批准号:
    10097682
  • 财政年份:
    2024
  • 资助金额:
    $ 50.73万
  • 项目类别:
    EU-Funded
CAREER: Chemoenzymatic Synthesis of Complex Polycyclic Alkaloids Enabled by A-Ketoglutarate Dependent Iron Enzymes
职业:通过 A-酮戊二酸依赖性铁酶实现复杂多环生物碱的化学酶法合成
  • 批准号:
    2338495
  • 财政年份:
    2024
  • 资助金额:
    $ 50.73万
  • 项目类别:
    Continuing Grant
Accurate analysis of PTM enzymes with an mRNA display/deep learning platform
利用 mRNA 显示/深度学习平台准确分析 PTM 酶
  • 批准号:
    23K23485
  • 财政年份:
    2024
  • 资助金额:
    $ 50.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Breaking Down the Structure-function Relationships in Enzymes that Catabolize Chlorophyll
职业:打破叶绿素分解酶的结构与功能关系
  • 批准号:
    2338329
  • 财政年份:
    2024
  • 资助金额:
    $ 50.73万
  • 项目类别:
    Continuing Grant
CAREER: The Human Gut as an Untapped Reservoir for Bacteria and Enzymes that Degrade Lignin, a Potential Sustainable Source for Critical Chemicals
职业:人类肠道是降解木质素的细菌和酶的未开发储库,木质素是关键化学品的潜在可持续来源
  • 批准号:
    2339225
  • 财政年份:
    2024
  • 资助金额:
    $ 50.73万
  • 项目类别:
    Continuing Grant
A framework for machine learning assisted directed evolution of plastic-degrading enzymes
机器学习辅助塑料降解酶定向进化的框架
  • 批准号:
    10059716
  • 财政年份:
    2023
  • 资助金额:
    $ 50.73万
  • 项目类别:
    Launchpad
Synthesis of functional PET probes targeting enzymes specifically expressed in glioma
针对神经胶质瘤中特异性表达的酶的功能性 PET 探针的合成
  • 批准号:
    23K04929
  • 财政年份:
    2023
  • 资助金额:
    $ 50.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of pseudo-natural products using enzymes from medicinal plants and development of therapeutic agents for glioblastoma
利用药用植物酶构建伪天然产物并开发胶质母细胞瘤治疗剂
  • 批准号:
    23H02642
  • 财政年份:
    2023
  • 资助金额:
    $ 50.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Bio-Responsive and Immune Protein-Based Therapies for Inhibition of Proteolytic Enzymes in Dental Tissues
用于抑制牙齿组织中蛋白水解酶的基于生物响应和免疫蛋白的疗法
  • 批准号:
    10555093
  • 财政年份:
    2023
  • 资助金额:
    $ 50.73万
  • 项目类别:
Understanding the evolution and function of xenobiotic detoxification enzymes in a global crop pest
了解全球农作物害虫中外源解毒酶的进化和功能
  • 批准号:
    BB/X010058/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50.73万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了