Multi-Modality Quantitiative Imaging for Evaluation of Response to Cancer Therapy
用于评估癌症治疗反应的多模态定量成像
基本信息
- 批准号:8188738
- 负责人:
- 金额:$ 67.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-19 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlbuminsAnatomyAngiogenesis InhibitorsAnimal ModelBiologyBrain NeoplasmsCellularityClinical TrialsCytotoxic ChemotherapyDataEnvironmentFDA approvedGlycolysisGoalsHistologyImageImage AnalysisImaging TechniquesImmunotherapyIndividualKnowledgeLesionLinkMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of lungMeasuresMetabolicMethionineMethodsMetricModalityModelingMolecular WeightNIH Program AnnouncementsNoiseOutcomePET/CT scanPathway interactionsPatientsPermeabilityPositron-Emission TomographyPrimary Brain NeoplasmsPrincipal InvestigatorProcessPropertyProtocols documentationReproducibilitySignal TransductionStatistical Data InterpretationSystemic diseaseTechnetium Tc 99m PentetateTherapeuticTracerTumor BiologyTumor VolumeValidationbasebevacizumabcancer therapychemotherapeutic agentimaging modalityimprovedinstrumentationmalignant breast neoplasmradiotracerresponsesimulationsingle photon emission computed tomographytext searchingtooltreatment responsetumortumor growth
项目摘要
DESCRIPTION (provided by applicant): Cancers are heterogeneous in biology among patients, tumors in the same patient, and within tumors. As a result, they respond differently to therapy per patient, per tumor and within tumors. Different radiotracers and imaging modalities provide information about different aspects of biology and the physio-metabolic environments of the cancer. As a result, a single modality or radiotracer may not provide sufficient information to predict or assess response to therapy. We hypothesize that improved prediction and assessment of response can thus be obtained by combining quantitative image-derived parameters obtained from multiple imaging modalities or radiotracers. We propose to develop, optimize, and validate approaches for combining multiple image-derived parameters obtained from quantitative imaging procedures in order to optimally predict and assess treatment response. In particular, we propose to combine quantitative metrics from PET/CT, SPECT/CT, and MRI. We will first individually optimize the protocols, acquisition parameters, and imaging methods in order to get the most accurate and reliable parameters to combine. Optimally combining the parameters from different modalities requires knowledge of the reproducibility (precision) of the individual quantitative imaging parameters. We will thus use literature search, phantom studies, realistic simulations, and repeated patient studies to characterize the accuracy and precision of the individual quantitative imaging methods. We will then develop methods to combine the metrics to predict or assess treatment response per patient, per tumor and intra-tumor. We will apply and evaluate these methods in three clinical trials: dynamic and static FDG and FIT PET/CT to assess lung cancer response to cytotoxic chemotherapy; PET/CT and DCE- and DW-MRI in breast cancer response; and SPECT/CT, PET/CT and DCE- and DW-MRI to predict response of brain tumors to anti-angiogenic therapy. In these trials imaging parameters and their signatures will be linked to histology or survival outcomes to provide validation of the combined imaging parameter metrics.
描述(申请人提供):癌症在患者之间、同一患者中的肿瘤以及肿瘤内的生物学上是不同的。因此,他们对每个患者、每个肿瘤和肿瘤内的治疗反应不同。不同的放射性示踪剂和成像方式提供了有关癌症生物学和生理代谢环境的不同方面的信息。因此,单一的模式或放射性示踪剂可能不能提供足够的信息来预测或评估治疗反应。我们假设,通过组合从多种成像方式或放射性示踪剂获得的定量图像衍生参数,可以改善对反应的预测和评估。我们建议开发、优化和验证结合从定量成像过程中获得的多个图像衍生参数的方法,以便最佳地预测和评估治疗反应。特别是,我们建议将PET/CT、SPECT/CT和MRI的定量指标结合起来。我们将首先对协议、采集参数和成像方法进行单独优化,以获得最准确和可靠的参数组合。最佳组合来自不同模式的参数需要了解单个定量成像参数的重复性(精确度)。因此,我们将使用文献搜索、模体研究、真实模拟和重复的患者研究来表征个体定量成像方法的准确性和精确度。然后,我们将开发方法来结合这些指标来预测或评估每个患者、每个肿瘤和肿瘤内的治疗反应。我们将在三个临床试验中应用和评估这些方法:动态和静态FDG和FIT PET/CT用于评估肺癌对细胞毒化疗的反应;PET/CT和DCE-和DW-MRI用于乳腺癌的反应;SPECT/CT、PET/CT和DCE-和DW-MRI用于预测脑肿瘤对抗血管生成治疗的反应。在这些试验中,成像参数及其签名将与组织学或生存结果联系起来,以提供组合成像参数度量的验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ERIC C. FREY其他文献
ERIC C. FREY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ERIC C. FREY', 18)}}的其他基金
Quantitative SPECT of Difficult to Image Therapeutic Radionuclides: An Extensible Cloud-Based Framework
难以成像的治疗性放射性核素的定量 SPECT:可扩展的基于云的框架
- 批准号:
9622938 - 财政年份:2018
- 资助金额:
$ 67.17万 - 项目类别:
Development and Validation of a Collaborative Web/Cloud-Based Dosimetry System for Radiopharmaceutical Therapy.
用于放射性药物治疗的协作网络/基于云的剂量测定系统的开发和验证。
- 批准号:
9909727 - 财政年份:2018
- 资助金额:
$ 67.17万 - 项目类别:
Development and Validation of a Collaborative Web/Cloud-Based Dosimetry System for Radiopharmaceutical Therapy.
用于放射性药物治疗的协作网络/基于云的剂量测定系统的开发和验证。
- 批准号:
10019481 - 财政年份:2018
- 资助金额:
$ 67.17万 - 项目类别:
Development and Validation of a Collaborative Web/Cloud-Based Dosimetry System for Radiopharmaceutical Therapy.
用于放射性药物治疗的协作网络/基于云的剂量测定系统的开发和验证。
- 批准号:
10249268 - 财政年份:2018
- 资助金额:
$ 67.17万 - 项目类别:
End-to-End Optimization of SPECT Instrumentation, Acquisition, and Reconstruction
SPECT 仪器、采集和重建的端到端优化
- 批准号:
8775665 - 财政年份:2013
- 资助金额:
$ 67.17万 - 项目类别:
End-to-End Optimization of SPECT Instrumentation, Acquisition, and Reconstruction
SPECT 仪器、采集和重建的端到端优化
- 批准号:
8595309 - 财政年份:2013
- 资助金额:
$ 67.17万 - 项目类别:
End-to-End Optimization of SPECT Instrumentation, Acquisition, and Reconstruction
SPECT 仪器、采集和重建的端到端优化
- 批准号:
8431490 - 财政年份:2013
- 资助金额:
$ 67.17万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 67.17万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 67.17万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 67.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 67.17万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 67.17万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 67.17万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 67.17万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 67.17万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 67.17万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 67.17万 - 项目类别:
Research Grant