Molecular Diagnosis and Prognosis in Aggressive Lymphoma

侵袭性淋巴瘤的分子诊断和预后

基本信息

  • 批准号:
    8090721
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This application is written in response to PAR-10-126, Strategic Partnering to Evaluate of Cancer Signatures [SPECS II] (U01)." The proposed project focuses on translating our previously discovery-oriented gene expression signatures into laboratory tests for lymphoma clinical trials and patient care. Our research consortium, the Lymphoma and Leukemia Molecular Profiling Project (LLMPP) will design and validate a multi-analyte diagnostic and prognostic gene signature assay to differentiate the 5 most common aggressive B cell non-Hodgkin lymphomas. Each lymphoma subtype will then be further classified into prognostic groups. Three methods of gene expression profiling with demonstrated utility in our feasibility testing will be rigorously evaluated including high density oligonucleotide arrays (Affymetrix), direct multiplexed measurement of gene expression (Nanostring), and quantitative nuclease protection assay (High Throughput Genomics). In Phase 1 diagnostic genes will be tested at all 3 platforms will be compared simultaneously at the Patient Characterization Center (PCC) at NCI-Frederick, operated by SAIC-Frederick and a second academic study site. In Phase 2, the "winning" platform will be tested at the PCC and 2 additional sites. In Phase 2, tested genes will be expanded to include prognostic signatures. Data will be generated in such a way as to be appropriate for submission for regulatory review. As opposed to our previous discovery work that was performed with snap frozen tissues which are scare and only available at academic centers, this project will use formalin fixed, paraffin embedded tissues (FFPET), which are routinely available from all biopsies, in order to have the broadest clinical application. The LLMPP is uniquely posed to accomplish this work by virtue of having performed the "gold standard" GEP experiments that define the diagnostic and prognostic distinctions in these lymphomas as well as holding matching FFPET blocks from the same cases. Hence, this proposed research addresses a critical unmet need to translate previous advances in the molecular diagnosis of aggressive lymphomas into a new clinical paradigm for accurate diagnosis, prognosis, and therapeutic target identification.
描述(由申请人提供):本申请是为响应PAR-10-126,癌症签名评估战略合作[SPECS II](U01)而写的。拟议的项目重点是将我们以前以发现为导向的基因表达签名转化为淋巴瘤临床试验和患者护理的实验室测试。我们的研究联盟,淋巴瘤和白血病分子图谱项目(LLMPP)将设计和验证一种多分析诊断和预后基因签名分析,以区分5种最常见的侵袭性B细胞性非霍奇金淋巴瘤。然后将每一种淋巴瘤亚型进一步分类为预后组。我们将严格评估在我们的可行性测试中证明实用的三种基因表达谱方法,包括高密度寡核苷酸阵列(Affymetrix)、基因表达的直接多路测量(NanoString)和定量核酸酶保护分析(High Throughput Genology)。在第一阶段,诊断基因将在所有三个平台上进行测试,同时将在NCI-Frederick的患者特征中心(PCC)进行比较,该中心由SAIC-Frederick运营,并将在第二个学术研究地点进行比较。在第二阶段,“获胜”平台将在PCC和另外两个地点进行测试。在第二阶段,测试的基因将扩大到包括预后标志。数据将以适合提交监管审查的方式生成。与我们之前的发现工作不同,我们使用的是只在学术中心才能获得的快速冷冻组织,这个项目将使用福尔马林固定的石蜡包埋组织(FFPET),这种组织通常可以从所有活组织检查中获得,以获得最广泛的临床应用。LLMPP是完成这项工作的独特方案,因为它进行了“黄金标准”的GEP实验,确定了这些淋巴瘤的诊断和预后区别,并持有来自相同病例的匹配的FFPET块。因此,这项拟议的研究解决了一个关键的未得到满足的需求,即将先前在侵袭性淋巴瘤分子诊断方面的进展转化为用于准确诊断、预后和治疗靶点识别的新的临床范例。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lisa Rimsza其他文献

Lisa Rimsza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lisa Rimsza', 18)}}的其他基金

Administrative Core
行政核心
  • 批准号:
    10477221
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10237162
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10013193
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
Molecular Diagnosis, Prognosis, and Therapeutic Targets in Lymphoma
淋巴瘤的分子诊断、预后和治疗靶点
  • 批准号:
    9788307
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
Development of Mantle Cell Lymphoma Proliferation Signature Assay
套细胞淋巴瘤增殖特征检测的发展
  • 批准号:
    9981868
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
Development of Mantle Cell Lymphoma Proliferation Signature Assay
套细胞淋巴瘤增殖特征检测的发展
  • 批准号:
    9535251
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
Development of Mantle Cell Lymphoma Proliferation Signature Assay
套细胞淋巴瘤增殖特征检测的发展
  • 批准号:
    10223219
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
Molecular Diagnosis and Prognosis in Aggressive Lymphoma
侵袭性淋巴瘤的分子诊断和预后
  • 批准号:
    9191003
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
Molecular Diagnosis and Prognosis in Aggressive Lymphoma
侵袭性淋巴瘤的分子诊断和预后
  • 批准号:
    8307807
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
Molecular Diagnosis and Prognosis in Aggressive Lymphoma
侵袭性淋巴瘤的分子诊断和预后
  • 批准号:
    8686600
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了