Phospholipid Metabolism in Cell Membrane
细胞膜中的磷脂代谢
基本信息
- 批准号:8653971
- 负责人:
- 金额:$ 28.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:BindingBiochemicalBiochemical PathwayBiologicalCardiovascular DiseasesCatalysisCatalytic DomainCell Cycle ArrestCell membraneCell physiologyCellsCommunicationComplexDetergentsDevelopmentEnergy TransferEnvironmentEnzymesEscherichia coliExtracellular DomainFamily memberFluorescenceHeadHomeostasisHomologous GeneHormonalIntegral Membrane ProteinLabelLateralLipid BilayersLipidsMalignant NeoplasmsMeasurementMeasuresMediatingMembraneMetabolicMetabolismModelingMolecularMolecular ConformationMonitorMotionMutagenesisMutationNeckNeoplasm MetastasisOrthovanadatePathway interactionsPhospholipid MetabolismPhospholipidsPhosphoric Monoester HydrolasesPlayProtein ConformationProtein DephosphorylationProtein DynamicsProtein FamilyProtein phosphataseProteinsRegulationRoentgen RaysRoleRouteScanningSiteSolutionsSolventsSpin LabelsStructural ModelsStructureSubstrate InteractionTestingTherapeuticTimeTissuesTransmembrane DomainTryptophanVanadatesanalogbasecarcinogenesiscardiovascular injurycell growthcell typecrosslinkdesignessential phospholipidsinhibitor/antagonistinorganic phosphatelipid metabolismlipid phosphate phosphatasemeetingsmembermembrane synthesisnanodisknovelprotein complexprotein structure functionreconstitutionresponsesignal processingstopped-flow fluorescence
项目摘要
DESCRIPTION (provided by applicant): Phospholipid metabolism is fundamental in cells. It not only generates basic biological membranes, but also plays important roles in cellular signaling processes in nearly all tissues. In addition, many proteins, both globular and membrane bound, require specific phospholipids to fulfill their functions. Cells maintain a complicated and regulated metabolic network to synthesize a great diversity of phospholipids and degrade them in a time fashion to meet cellular requirements. Many steps of phospholipid metabolism take place on the cell membrane and are catalyzed by membrane-embedded enzymes. Their molecular mechanisms are poorly understood largely due to the paucity of structural information. In particular, how these enzymes select their substrates from the lipid membrane bilayer and carry out catalysis in a hydrophobic membrane environment is a central question still unanswered for general phospholipid metabolic mechanisms. To understand this important question, we study lipid phosphate phosphatases (LPPs) as model. LPPs, members of an intramembrane phosphatase protein family, play important roles in phospholipid synthesis and homeostasis. LPPs also catalyze dephosphorylation of several important phospholipid hormonal messengers regulating numerous phospholipids-mediated signaling processes. Based on our recent apo form crystal structure of the PgpB protein, an LPP homolog from E.coli, we proposed a novel hypothesis for the intramembrane dephosphorylation mechanism of PgpB, in which a) phospholipid substrates access an conserved intramembrane tunnel from the membrane bilayer to reach the catalytic site and b) a large conformational change of TM3 is essential for substrate binding and catalysis. To test this important hypothesis, in this project w will focus on two key aspects using a combination of biochemical, biophysical and X-ray structural approaches. 1) To demonstrate the substrate binding conformation and substrate-induced protein conformational changes, we will determine PgpB complex structures bound with a metabolism-stabilized phospholipid substrate analog or vanadate, a phosphate product analog, to gain structural details of a catalytic cycle. 2) To functionally characterize the intramembrane substrate access tunnel, we have designed several mutagenesis and crosslinking strategies to elucidate how the substrate passes through the intramembrane tunnel to reach the catalytic site. We will also explore the product release pathway using similar approaches to understand how the dephosphorylated product is delivered to the membrane bilayer after catalysis. 3) To further demonstrate the protein conformational changes, we will apply EPR and fluorescence stopped-flow approaches to catch the protein motions in response to the substrate analog binding in atomic detail in detergent solutions or in different lipid-defind nanodiscs. These structural and functional studies will not only confirm our hypothesis and reveal the catalytic mechanism of intramembrane phospholipid dephosphorylation, but also establish a structural basis to understand phospholipid metabolism in the cell membrane in general.
描述(由申请人提供):磷脂代谢是细胞的基础。它不仅产生基本的生物膜,而且在几乎所有组织的细胞信号传导过程中起重要作用。此外,许多蛋白质(无论是球状蛋白质还是膜结合蛋白质)都需要特定的磷脂来实现其功能。细胞维持一个复杂的和受调控的代谢网络,以合成多种多样的磷脂,并以时间的方式降解它们以满足细胞的需求。磷脂代谢的许多步骤发生在细胞膜上,并由膜包埋酶催化。其分子机制知之甚少,主要是由于缺乏结构信息。特别是,这些酶如何从脂膜双层中选择底物并在疏水膜环境中进行催化,这是一般磷脂代谢机制尚未回答的核心问题。为了理解这个重要问题,我们以脂质磷酸磷酸酶(LPP)为模型进行研究。LPPs是膜内磷酸酶蛋白家族的成员,在磷脂合成和体内平衡中起重要作用。LPPs还催化几种重要的磷脂激素信使的去磷酸化,调节许多磷脂介导的信号传导过程。基于我们最近发现的Pgp B蛋白(一种来自大肠杆菌的LPP同系物)的载脂蛋白形式晶体结构,我们提出了Pgp B的膜内去磷酸化机制的新假设,其中a)磷脂底物从膜双层进入保守的膜内隧道到达催化位点,B)TM 3的大构象变化对于底物结合和催化是必不可少的。为了验证这一重要的假设,在这个项目中,我们将集中在两个关键方面,使用生物化学,生物物理和X射线结构的方法相结合。1)为了证明底物结合构象和底物诱导的蛋白质构象变化,我们将确定与代谢稳定的磷脂底物类似物或钒酸盐(磷酸盐产物类似物)结合的PgpB复合物结构,以获得催化循环的结构细节。2)为了在功能上表征膜内底物通道,我们设计了几种诱变和交联策略来阐明底物如何通过膜内通道到达催化位点。我们还将探索使用类似的方法,以了解如何去磷酸化的产品被交付到催化后的膜双层的产品释放途径。3)为了进一步证明蛋白质的构象变化,我们将应用EPR和荧光停流方法来捕捉蛋白质运动响应于在去污剂溶液或不同的脂质定义的纳米盘中的原子细节中的底物类似物结合。这些结构和功能的研究不仅将证实我们的假设,并揭示膜内磷脂去磷酸化的催化机制,但也建立了一个结构基础,了解磷脂代谢的细胞膜一般。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Zheng其他文献
Lei Zheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Zheng', 18)}}的其他基金
Integration of stromal targeting agents with immune checkpoint therapy
基质靶向剂与免疫检查点疗法的整合
- 批准号:
10408084 - 财政年份:2021
- 资助金额:
$ 28.88万 - 项目类别:
Structure and function of a metabolic pacemaker in bacterial cell membrane
细菌细胞膜代谢起搏器的结构和功能
- 批准号:
10280369 - 财政年份:2021
- 资助金额:
$ 28.88万 - 项目类别:
Structure and function of a metabolic pacemaker in bacterial cell membrane
细菌细胞膜代谢起搏器的结构和功能
- 批准号:
10652472 - 财政年份:2021
- 资助金额:
$ 28.88万 - 项目类别:
Structure and function of a metabolic pacemaker in bacterial cell membrane
细菌细胞膜代谢起搏器的结构和功能
- 批准号:
10457395 - 财政年份:2021
- 资助金额:
$ 28.88万 - 项目类别:
Integration of stromal targeting agents with immune checkpoint therapy
基质靶向剂与免疫检查点疗法的整合
- 批准号:
10661808 - 财政年份:2021
- 资助金额:
$ 28.88万 - 项目类别:
Structure and function of a metabolic pacemaker in bacterial cell membrane
细菌细胞膜代谢起搏器的结构和功能
- 批准号:
10796719 - 财政年份:2021
- 资助金额:
$ 28.88万 - 项目类别:
Annexin A2 as a mediator of pancreatic cancer metastases
膜联蛋白 A2 作为胰腺癌转移的介质
- 批准号:
8579467 - 财政年份:2013
- 资助金额:
$ 28.88万 - 项目类别:
Annexin A2 as a mediator of pancreatic cancer metastases
膜联蛋白 A2 作为胰腺癌转移的介质
- 批准号:
8712421 - 财政年份:2013
- 资助金额:
$ 28.88万 - 项目类别:
Interrogate the interaction between tumor cells and nerves in the tumor microenvironment of pancreatic cancer
探究胰腺癌肿瘤微环境中肿瘤细胞与神经之间的相互作用
- 批准号:
9764752 - 财政年份:2013
- 资助金额:
$ 28.88万 - 项目类别:
Interrogate the interaction between tumor cells and nerves in the tumor microenvironment of pancreatic cancer
探究胰腺癌肿瘤微环境中肿瘤细胞与神经之间的相互作用
- 批准号:
10578764 - 财政年份:2013
- 资助金额:
$ 28.88万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 28.88万 - 项目类别:
Continuing Grant
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Standard Grant
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Operating Grants
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
- 批准号:
2334134 - 财政年份:2023
- 资助金额:
$ 28.88万 - 项目类别:
Standard Grant














{{item.name}}会员




